

A Hybrid GRASP Algorithm for Minimizing Total

Weighted Resource Tardiness Penalty Costs in

Scheduling of Project Networks

M. Ranjbar
*

Mohammad Ranjbar, Assistant Professor, Ferdowsi University of Mashhad, Department of Industrial Engineering

 ABSTRACT KEYWORDS

In this paper, we consider scheduling of project networks under

minimization of total weighted resource tardiness penalty costs. In

this problem, we assume constrained resources are renewable and

limited to very costly machines and tools which are also used in other

projects and are not accessible in all periods of time of a project. In

other words, there is a dictated ready date as well as a due date for

each resource such that no resource can be available before its ready

date but the resources are allowed to be used after their due dates by

paying penalty costs depending on the resource type. We also assume,

there is only one unit available of each resource type and no activity

needs more than it for execution. The goal is to find a schedule with

minimal total weighted resource tardiness penalty costs. For this

purpose, we present a hybrid metaheuristic procedure based on the

greedy randomized adaptive search algorithm and path-relinking

algorithm. We develop reactive and non-reactive versions of the

algorithm. Also, we use different bias probability functions to make

our solution procedure more efficient. The computational experiments

show the reactive version of the algorithm outperforms the non-

reactive version. Moreover, the bias probability functions defined

based on the duration and precedence relation characteristics give

better results than other bias probability functions.

 © 2012 IUST Publication, IJIEPR, Vol. 23, No. 3, All Rights Reserved.

1

1. Introduction

The goal of the resource-constrained project

scheduling problem (RCPSP) is to minimize the

duration of a project subject to finish-to-start type

precedence constraints and renewable resources

constraints. It is shown in Blazewicz et al. [1] that the

Corresponding author: Mohammad Ranjbar
*

 Email: m_ranjbar@um.ac.ir

 Paper first received Sep. 28, 2011, and in revised form June

 16, 2012.

RCPSP, as a generalization of the job-shop scheduling

problem, is NP-hard in the strong sense. A large

number of exact and heuristic procedures have been

proposed to construct workable baseline schedules for

this problem; see Demeulemeester and Herroelen [2],

Neumann et al. [3] for recent overviews and Herroelen

[4] for a discussion on the link between theory and

practice.

In some projects, some expensive resources like

especial types of crane, tunnel boring machines, very

expert humans and etc. are often hired out of the

project. Companies that lease these costly resources

Project scheduling;

Weighted Resource tardiness;

GRASP;

path-relinking

september 2012, Volume 23, Number 3

pp. 231-243

http://IJIEPR.iust.ac.ir/

International Journal of Industrial Engineering & Production Research

 ISSN: 2008-4889

http://ijiepr.iust.ac.ir/search.php?slc_lang=en&sid=1&auth=Ranjbar
http://ijiepr.iust.ac.ir/search.php?slc_lang=en&sid=1&auth=Ranjbar
mailto:m_ranjbar@um.ac.ir

232 M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness …

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

have a plan for leasing them and consequently this

schedule dictates ready dates and due dates to the

customers.

We assume these types of resources are constrained

renewable and are not available in all periods of time

of a project horizon. We also assume only these

resources are constrained while other resources are

unlimited. In most of the projects, usually one unit of

each expensive resource type is hired and no activity

needs more than it for execution. For each resource

type, we consider a ready date, a due date and a penalty

cost.

No resource can be accessible before its ready date but

these resources are permitted to be released after their

due dates by paying penalty costs. The goal is to find a

schedule with minimal total weighted resource

tardiness penalty costs. Thus, we face to a RCPSP

under minimization of total weighted resource

tardiness penalty cost, shown by the RCPSP-

TWRTPC. The RCPSP-TWRTPC was introduced by

Ranjbar et al. [5] and they presented a branch-and-

bound algorithm for it.

Also, Khalilzadeh et al. (2012) introduced a

generalized version of the RCPSP-TWRTPC in which

the multi mode projects are considered. They

developed a particle swarm metaheuristic for the

proposed problem.

Other related scheduling problems in the literature are

in fields of project scheduling and machine scheduling

with objective functions linked to the tardiness. In all

of these problems, the issue of tardiness is proposed for

activities or jobs and not for resources or machines.

Vanhoucke et al. [7] have developed a branch-and-

bound (B&B) algorithm accompanied with an exact

recursive search procedure for the RCPSP under

earliness/tardiness objective. Also, Nadjafi and

Shadrokh [8] developed a B&B algorithm for the

weighted earliness-tardiness project scheduling

problem with generalized precedence relations.

The contributions of this article are two: (1) we

develop reactive and nonreactive versions of a hybrid

metaheuristic for the RCPSP-TWRTPC; (2) we

develop seven biased probability functions to make

algorithm more efficient and show, using

computational results, that biased probability functions

defined on the basis of duration and precedence

relation characteristics outperforms others.

The remainder of this article is organized as follows.

Problem modeling and formulation are provided in

Section 2. Section 3 presents our solution

representation while Section 4 is devoted to our

developed metaheuristic algorithm. The computational

experiments are presented in Section 5. Finally,

summary and conclusions are given in Section 6.

2. Problem Modeling and Formulation
The RCPSP-TWRTPC can be represented by a

disjunctive graph  DCNG ,, . Graph G has an

activity-on-node (AON) representation in which

 1,...,1,0  nN indicates the set of activities (nodes)

where dummy activities 0 and n+1 represent start and

end of the project. The set of conjunctive arcs

  NjijijiC  ,,;, consists of arcs

representing technical finish-to-start type precedence

relations among activities where ji  implies activity

j can be started after finishing of activity i. Let

 mR ,...,2,1 be the set of constrained renewable

resources and rN the set of activities which need (one

unit of) resource Rr  for execution. For each pair

of activities , ; 1,...,ri j N r m  , there is a

disjunctive arc i j between nodes i and j requiring

the resource .r Thus, we present a set of disjunctive

arcs as  , ; , : , rD i j i j r R i j N     such

that we should determine ji  or j i because

availability of each resource is at most one unit in each

period of time and two activities i and j where

Dji , can not be processed in parallel. For each

activity i, the parameter id indicates its duration

where 010  ndd . In addition, for each resource r,

r , r and rw show the ready date, due date and

weight of this resource, respectively. In order to embed

the resource ready dates in the graph representation, we

add one node corresponding to each resource to the

project network.

For the resource r, this node displays an activity with

duration r which is direct successor of the start

dummy activity and direct predecessor of every

activity rNi  . Also, we consider these arcs as the

elements of the set of conjunctive arcs C.

Table 1 shows the resource information of a RCPSP-

TWRTPC instance with n=6 real activities and m=2

resources while the corresponding graph is depicted in

Figure 1 (Ranjbar et al. [5]). In this figure, the number

shown above each node indicates activity duration and

the number(s) below indicate the resources required for

activity execution. The nodes labeled  and 

correspond to ready times of resources 1 and 2,

respectively. Precedence relations of each of these

nodes with dummy node 0 and the nodes which require

resources 1 and 2 are depicted with bold arcs. Also, the

disjunctive arcs are depicted with dashed lines while

conjunctive arcs are shown as regular arcs. Any

solution of a RCPSP-TWRTPC instance is shown by

the vector  nsss ,...,, 21S where is is an non-

negative integer and shows the start time of activity i.

Given a policy for scheduling, such as earliest start

time schedule, this solution S is equivalent to a

selection)(D , denoting a selection of disjunctive

arcs from D, as long as the selection)(D has one and

only one arc from every pair ji  , and the resulting

M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness … 233

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

graph  )(,, DCNG  is not cyclic. Conversely, any

selection)(D satisfying the above properties

corresponds to a feasible schedule.

Let),(jiL denote the length of the longest path from

node i to node j in graph  )(,, DCNG  (if there is

no path between i and j, then),(jiL is not defined).

The (earliest) finish time of activity i,
iii dsf  ,

equals to),0(iL and can be computed using the

algorithm of Bellman [9] with complexity NO .

The release time of resource r shown by rc equals to

 i
Ni

r fc
r

 max and the tardiness of this resource is

calculated as  0,max rrr cT  . Then, the total

weighted resource tardiness penalty cost equals to




m

r

rrTw
1

.

Tab.1. Resource information of the example project

Resource (r)
r r rw rN

1 1 18 3 {1,2,4,5}

2 4 22 4 {3,4,5,6}

The RCPSP-TWRTPC can be formulated as the

following linear integer programming model using

variables
rri Tcs ,, and

ijX where for all

1,,  ijXDji if jiji  and 0ijX if

ijji  .





m

r

rrTwZ
1

min (1)

Subject to:

; 1,..., ;r i i rc s d r m i N    (2)

; 1,...,r r rT c r m   (3)

0; 1,...,rT r m  (4)

; 1,..., ;i r rs r m i N   (5)

 ; ,j i is s d i j C    (6)

 1 ; ,j i i ijs s d M X i j D      (7)

; ,i j j ijs s d MX i j D     (8)

 , , ; 0,1,..., 1; 1,2,..., and , : 0,1i r r ijs c T i n r m i j D X      Z (9)

The objective function (1) represents the minimization

of the total weighted resource tardiness penalty costs.

Constraint (2) shows that the release time of each

resource is not less than the finish time of activities

which require that resource. Constraints (3) and (4)

ensure that
rT is equal to  0,max rrc  . Constraint

Fig.1. Graph of the example project

234 M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness …

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

(5) makes the starting times of all activities greater

than or equal to the ready dates of their corresponding

resources. Constraint (6) represents the technical

precedence relations or conjunctive constraints while

constraints (7) and (8) relate to the resource or

disjunctive constraints. Finally, constraint (9) in which


Z indicates the set of non-negative integers, ensures

that variables ri cs , and
rT are non-negative integers

and
ijX is a binary variable.

3. Solution Representation
Our constructive heuristic algorithm uses a

schedule representation to encode a project schedule

and a schedule generation scheme to translate the

schedule representation to a schedule S. In our

problem, the schedule generation scheme determines

how a feasible schedule is constructed by assigning

starting times to the activities, whereby disjunctive arcs

are converted to conjunctive arcs by schedule

representation. We represent each solution of the

RCPSP-TWRTPC using a binary list called direction

list (DL) and shown by  
D

eeDL ,...,1 . Each ke in

DL represents a direction for disjunctive arc Dji ,

and is a binary variable. It is one if we consider

disjunctive arc ji, as conjunctive arc  ji, and zero,

otherwise. It should be noticed that to construct DL, we

first sort elements of  jiD , on the basis of non-

decreasing order of i in ji, (using smallest j as a tie-

breaker). Then, ke of DL relates to the
thk sorted

ji, , ||,...,1 Dk  . For the example project, we have

 6,5,5,4,5,3,4,3,5,2,4,1,2,1D and the

optimal solution, found by enumeration, of this project

is obtained with

 1,1,0,0,1,1,1 7654321  eeeeeeeDL

corresponding to the following arcs: (1,2), (1,4), (2,5),

(4,3), (5,3), (4,5) and (5,6). Each solution of the

RCPSP-TWRTPC can be easily translated to a

schedule S using the well-known critical path method

(CPM), shown by S=CPM(DL). The optimal solution

corresponding to the above mentioned DL is

S=(1,4,17,6,12,21) with 8 units of tardiness penalty

cost.

4. GRASP and Path-Relinking

Below, we discuss GRASP and path-relinking as a

general heuristic procedure and describe the overall

structure of our search procedure for resolution of the

RCPSP-TWRTPC-solutions.

4-1. General Overview

In the following we briefly describe general GRASP

and path-relinking procedures.

4-1-1. GRASP

A greedy randomized adaptive search procedure

(GRASP) is a multi-start and iterative process (Aiex et

al. [10]; Feo and Resende [11]; Feo et al. [12]). Each

GRASP-iteration consists of two phases: in a

construction phase, a feasible solution is produced and,

in a local-search phase, a local optimum in the

neighborhood of the constructed solution is sought.

The best overall solution is kept as the result.

In the construction phase, a feasible solution is

iteratively constructed, one element at a time. The

basic construction phase in GRASP is similar to the

semi-greedy heuristic proposed independently by Hart

and Shogan [13]. At each construction iteration, the

choice of the next element to be added is determined

by ordering all candidate elements (i.e. those that can

be added to the solution) in a candidate list with respect

to a greedy function. This function measures the

benefit of selecting each element. The heuristic is

adaptive because the benefits associated with every

element are updated at each iteration of the

construction phase to reflect the changes brought on by

the selection of the previous element. The probabilistic

component of a GRASP resides in the fact that we

choose one of the best candidates in the list but not

necessarily the top candidate; the list of best candidates

is called the restricted candidate list. It is almost always

beneficial to apply a local-search procedure to attempt

to improve each constructed solution.

4-1-2. Path-Relinking

Path-relinking is an enhancement to the basic GRASP

procedure, leading to significant improvements in

solution quality. Path-relinking was originally

proposed by Glover [14] as an intensification strategy

exploring trajectories connecting elite solutions

obtained by tabu search or scatter search (see Glover

and Laguna [15] and Glover et al. [16]). Starting from

one or more elite solutions, paths in the solution space

leading towards other elite solutions are generated and

explored in the search for better solutions. This is

accomplished by selecting moves that introduce

attributes contained in the guiding solutions. Path-

relinking may be viewed as a strategy that seeks to

incorporate attributes of high quality solutions, by

favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure,

as an intensification strategy applied to each locally

optimal solution, was first proposed by Laguna and

Marti [17]. It was followed by several extensions,

improvements, and successful applications (see Ribeiro

et al. [18], Resennde et al. [19] and Alvarez et al. [20]).

4-2. Adapting GRASP and Path-Relinking to Our

Setting

4-2-1. Global Structure of the Algorithm

The pseudo-code of global structure of our GRASP and

path-relinking implementation is illustrated in

Algorithm 1. Our basic algorithm maintains a set of

elite solutions (ES) to combine them in step 9 using

M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness … 235

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

path-relinking algorithm. This set is initializes as an

empty set in the first step. A while-loop is repeated

until termination criterion (TC), a specified number of

iterations, is met. At the beginning of this loop, a DL is

built using building direction list (BDL) procedure

(Section 4.2.2). Next, generated DL is evaluated using

CPM and is improved using local search (LS)

procedure (Section 4.2.3).

In steps 6 to 11, we decide to add DL to the ES or not.

For this purpose, we define Max_Elite as the maximum

size of ES (size of ES is shown by |ES|) and

 )(CPM),(CPM iDLDL as the difference between DL

and iDL , which is the number of different start times

for identical activities in CPM(DL) and)(CPM iDL

divided by n. The first condition for each DL to be

included in ES is that it should be different from all

elements in ES. This condition is checked in step 6 and

if it is not satisfied, we go to the end of while loop at

step 13 and discard generated DL. If the first condition

is assured, the next condition is that the size of ES to be

smaller than the Max_Elite. If DL is not added to ES in

step 7, we should follow steps 8 to 12. In step 8, we

select a direction list from ES on the basis of a biased

random sampling strategy. Random sampling is biased

using probability vector  EliteMaxqq _1 ,...,Q in which





ESj

jii bbq and   i
i

i ZDLDLb)(CPM),(CPM where

iDL is the
thi element of ES and iZ stands for the

value of the objective function for the solution

)(iDLCPM where i=1,..,Max_Elite. For each iDL ,

having smaller objective functions and higher

differences with DL gives rise to its selection chance.

The selected direction list, shown by LD  , is

combined with DL using path-relinking (PR) procedure

developed by Ranjbar et al. [21] (Section 4.2.4). In step

11, we compare the output of PR procedure with the

worst element of ES, shown by LD  . If LD  is better

than LD  , it is replaced by LD  . Whenever TC is

met, the best found solution is returned.

Algorithm 1: Global algorithm structure

1: ES=

2: while TC not met do

3: Build DL using BDL

4: S=CPM(DL)

5: LS(DL)DL 

6: if   0)(CPM),(CPM:  ii DLDLESDL go to step 13.

7: else if EliteMaxES _ then DLESES 

8: else

9: select LD  randomly from ES using probability vector Q

10:  LDDLPRDL  ,

11: if DL is better than the worst element LD  in ES then   DLLDESES  \

12: end else

13: end while

14: Return the best found solution

4-2-2. Building Direction List Procedure

This is an iterative algorithm and in each iteration, at

least one of the elements of  
D

eeDL ,...,1 is set to

zero or one. For each unset element of DL, in each

iteration, two candidate elements 1,0 are defined in a

candidate list CL.

Thus, at the beginning CL has ||2 D elements. In an

iteration, let u as the number of unset elements of DL.

Consequently, there are a total of u zeros and total of u

ones in the corresponding CL. One of these zeros or

ones is selected, as explained in the Algorithm 2. If the

selected item is zero (one), then its corresponding

element in D is set to zero (one). To assure that the

network resulting from the generated DL is not acyclic,

a path matrix PM is defined and used in the algorithm

(Ranjbar et al. [5]). PM is an (m+n+2)(m+n+2) matrix

in which 1),(jiPM iff there exists a path from node i

to node j and 0),(jiPM , otherwise.

In each iteration of BDL, one element is selected from

a restricted candidate list (RCL) to be set in DL. This

element is selected by a biased random procedure. In

order to make bias random selection of elements, we

use seven rules, defined by Ranjbar et al. [5], and name

each of them a priority rule (pr). Priority list (PL), built

in step 2, is a sorting of disjunctive arcs based on

priority rule pr, see Section 4.3.

In step 3, we determine that whether the algorithm to

be reactive or nonreactive by selecting value(s) for .

If  is fixed, we have nonreactive version of the

algorithm but if at each iteration,  is selected from a

discrete set of possible values, the reactive version of

the algorithm is chosen.

236 M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness …

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

Algorithm 2: Building direction list procedure
1: Create CL and PM

2: Build PL based on priority rule pr

3: Select  from set  randomly using probability vector P

4: DL=

5: Calculate the incremental penalty cost)(eZ for all CLe

6: while CL do

7:  CLeeZZ  |)(minmin

8:  CLeeZZ  |)(maxmax

9:  )()(| minmaxmin ZZZeZCLeRCL  

10: Select an element e from the RCL randomly based on vector 

11: Insert e in corresponding position of DL

12: Update PM and CL

13: Recalculate the incremental penalty costs;

14: end while

15: Update vector P

16: Return DL

In the reactive version, the selection of  is guided by

the solution values found in the previous iterations.

One way to accomplish this is to use the rule proposed

by Prais and Ribeiro [22]. Let  k ,...,1 be the

set of possible values for . In each iteration, i has

the chance of ip of being selected given by

probability vector  kpp ,...,1P where initially

kikpi ,...,1;1  . Furthermore, let *Z be the

objective function value of the best found solution and

let iA be the average objective function value of all

solutions found using kii ,...,1;   . The

selection probabilities are updated (step 15) by taking





k

j

jii aap
1

, with
ii AZa * for i=1,…,k. In step

4, we initialize DL as an empty set. In the next step, we

calculate the incremental tardiness penalty cost

corresponding to all CLe , shown by Z(e). In

continue, a while loop is repeated until CL is not

empty. If
minZ and

maxZ show the minimum and

maximum of incremental tardiness penalty cost for all

CLe , we define RCL as

 )()(| minmaxmin ZZZeZCLeRCL   .

In step 10, we select an element from RCL by a biased

random procedure, proposed by Bresina [23]. For this

purpose, we rank the elements of RCL based on

priorities specified by PL in which identical rank is

considered for both one and zero values of each

disjunctive arc. Let)(er be the rank of RCLe , we

define  
RCL

 ,...,1π as the probability vector for

selecting e from RCL in step 10, where e is :

 





RCLe

e
er

er

)(1

)(1


 (10)

In the next step, selected member element RCLe is

inserted in corresponding element of DL.

In step 11, the CL and PM are updated as follows.

First, we remove from CL the element which contains e

and also the element indicating opposite direction for

the disjunctive arc associated to the selected element e.

Second, if selected element e corresponds to arc  ji, ,

we update PM using four following rules:

a)   1, jiPM ,

b)  )(;1, jsuckkiPM  ,

c)  )(;1, ipredlilPM 

d)  )(,)(;1, jsuckipredlklPM  .

In these four rules, pred(i) and suc(j) indicate all (direct

and indirect) predecessors and successors of activity i

respectively, initialized based on set C and is updated

whenever a new conjunctive arc is added. Rule (a)

shows that arc ji  creates a path between nodes i

and j.

Also, rule (b) indicates that arc ji  builds a path

between node i and every node of suc(j) while rule (c)

shows that this new added arc creates a path between

every node of pred(i) and node j.

Finally, the last rule demonstrates that arc ji 

builds a path between every node of pred(i) and every

node of suc(j). Also, for each Dji , that

 jiPM , has been changed after updating, we remove

both zero and one elements, corresponding to this

disjunctive arc, from CL and add the element

corresponding to   1, jiPM to DL. In step 13, the

incremental tardiness penalty costs are recalculated and

final DL is returned in step 16.

M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness … 237

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

4-2-3. Local Search Procedure

The local search procedure is illustrated by pseudo-

code in Algorithm 3. Let
*G be the input graph with

direction list *DL . In the first step, graph
*G which

corresponds to the solution  ** CPM GS and

objective function
*Z are taken as inputs. Next, we

change the value of each element *DLei  from zero

to one or vice versa while other elements are

unchanged. This changes the direction of related

conjunctive arc and is shown by)(ieinv . In step 4, we

update graph
*G and check its feasibility using Floyd-

Warshal algorithm (Lawler [24]). If
*G is cyclic, we

call repairing procedure (RP), shown in Algorithm 4,

to make
*G feasible. Of course, the output of RP is

not always a feasible solution and in this case, we go to

the next i in step 2. In the repairing procedure, we

change values of some DLe j  except j i to

remove all loops from
*G . We show the output graph

of RP by G. Also, if changing ie does not result in a

cyclic graph, we only let
*GG  in step 8. This

procedure is repeated for all elements of *DL and

whenever an improvement is obtained, the input

solution *
S and its corresponding objective function

*Z are updated. Finally, the best found solution in

neighborhood of *
S or itself is returned as output

solution. In the RP, the inputs are graph

 )(,, ** DCNG  where)(* D is specified using
*DL and index i. First of all, we check possibility of

repairing by letting)(iearcCC  where)(iearc

denotes the directed arc corresponding to ie . Since the

graph in which none of disjunctive arcs are fixed is

acyclic, existence of any loop in  CNG , implies

that no feasible solution can be found while)(iearc is

included in the project network. In this case, we return

"infeasible" as output; otherwise, based on order

specified by *DL , we include directed arcs

corresponding to *DLe j  one by one in graph G.

Whenever a loop is detected, we should include

))((jeinvarc instead of)(jearc in graph G.

Algorithm 3: Local search procedure

1: Let
*Z be the objective function of input solution

*
S where  ** CPM GS

2: for i=1 to D do

3:)(ii einve 

4: Update
*G

5: if
*G is cyclic, then),(* iGRP .

6: if),(* iGRP is infeasible, then go to step 2.

7: else),(* iGRPG 

8: S=CPM(G)

9: let Z as the objective function of graph G

10: if
ZZ  , then (ZZ 

 and SS *
)

11: end for

12: Return
*

S

Algorithm 4: Repairing procedure

1: get
*G and i as inputs.

2: Let)(iearcCC 

3: if  CNG , is cyclic, then go to step 8

4: for j=1 to D and ij  do

5:)(jearcCC 

6: if  CNG , is cyclic, then  ))(()(\ jj einvarcearcCC 

7: end for

8: Return G

9: Return "infeasible".

238 M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness …

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

4-2-4. Path-Relinking Procedure

The idea of our path-relinking procedure, illustrated in

Algorithm 5, is taken from Ranjbar et al.2009 [21]. In

the first step, we get two direction lists DL and LD 
as inputs. In the second step, we assign DL to initial

direction list (inDL) and LD  to guiding direction list

(
guDL). This assignment is exchanged in step14 and

procedure is repeated again. Also, we define child set

CS as the selected children using PR procedure and let

it as an empty set in step 2. Next, we let graph set GS, a

set of generated graphs, as an empty set. In continue,

we construct graphs
inG and

guG corresponding to

direction lists
inDL and

guDL . Steps 5 to 12 show a

loop in which for i=1 to |D|, we check whether
gu

i

in

i ee  or gu

i

in

i ee  . If gu

i

in

i ee  , we change
in

ie to

gu

i

in

i ee  for graph
inG in step 8. Next, we check the

existence of loop in
inG . If it is the case, we apply the

RP with following changes: remove steps 1,2,3 and 9

from RP and consider step 4 for Dij ,...,1 . This

is because
guG is acyclic and

gu

j

in

j ee  for ij ,...,1

, and to make
inG an acyclic graph, we need change

some values of je for ij  . In step 10, repaired

graph is added to GS. At the beginning of step 13, one

path of path-relinking has been made. In step 15, one

solution is selected from this path and is added to CS.

The selected solution that is a graph should have

direction list different from all members of ES. Steps 3

to 13 are repeated by exchanging role of initial and

guiding direction lists. After step 14, CS has two

members and we select the better one using CPM in

step 15. Selected member is returned as the output of

PR procedure in step 16.

Algorithm 5: Path-relinking procedure

1: get DL and LD  as inputs

2: let DLDLin  , LDDLgu  and CS=

3: Let GS

4: Construct graphs
inG and

guG corresponding to
inDL and

guDL

5: for i=1 to |D| do

6: if
gu
i

in
i ee  , then

7:
gu
i

in
i ee 

8: Update
inG

9: if
inG is cyclic, then),(iGRPG inin 

10:
inGGSGS 

11: end if

12: end for

13: select randomly one member from GS such that its direction list is different from all

 members of ES and add it to CS.

14: Let LDDLin  , DLDLgu  , repeat the algorithm one more time from step 3.

15: Find better child solution and let LD  its corresponding direction list

16: Return LD 

4-3. Priority rules

In this section, we use seven priority rules, developed

by Ranjbar et al. [5], to establish the priorities of

disjunctive arcs in PL where priority values are

determined by  Djiij  ,;λ . Priority rules are

developed based on three characteristics of activities,

i.e. precedence relations, durations and resource

requirements. In each priority rule, we define a value

ij for each disjunctive arc ji  and the sequence

of arcs in PL is made by non-increasing order of ij

values. As a tie breaker, ij with smaller i and then

smaller j gets priority. Table 2, taken from Ranjbar et

al. [5], shows the formula of each priority rule and the

contributing characteristics. In the priority rule 1, only

precedence relations of activities are contributing. In

this rule, ij equals the summation of the total number

of successors of activities i and j. Similar to priority

rule 1, in priority rules 2 and 3 only one characteristic

is contributing. In priority rule 2, ij equals the

summation of the durations of activities i and j while in

priority rule 3 it equals the summation of r values for

all
iRr  or jR where  rrrr w   and iR

denotes the set of required resources for execution of

activity Ni  .

M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness … 239

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

Each one of priority rules 4, 5 and 6 is based on the

contribution of two characteristics. In priority rule 4,

the precedence relations and durations are contributing,

the summation of tails of activities i and j is considered

as ij . Tail of activity Ni  , shown by iq , is a lower

bound for the time period between the completion of

activity i and the project deadline and is calculated

using equation (11).

  Cjiqdq jji  ,;max (11)

Equation (11) requires initialization which is given by

01 nq .

Two characteristics, precedence relations and resource

requirements are contributing in rule 5 in which ij

equals the summation of r values for all
kRr  where

k is representative of all activities belonging to at least

one of the pred(i), pred(j), suc(i) or suc(j) and

requiring at least one common resource with activity i

and j. Rule 6 is based on the combination of two

characteristics, durations and resource requirements,

while in the last priority rule all three characteristics

are contributed.

Tab. 2. Priority rules 1 to 7

R
u

le
 n

u
m

b
e
r

ij

Characteristics

Precedence

relations
durations

Resource

requirements

1)()(jsucisuc  

2 ji dd  

3

 i j

r

r R R




 

4 ji qq   

5  
 

() () () () , k

k i j

r

k pred i pred j suc i suc j r R

R R R


 



 
 

6

i j

i r j r

r R r R

d d 
 

   

7  
 

() () () () ,i j k

k i j

i r j r k r

r R r R k pred i pred j suc i suc j r R

R R R

d d d  
   



    

  

Table 3 illustrates the result of application of each

priority rule on the example project. In this table, set 

and its corresponding priorities list (PL) of the

disjunctive arcs are shown for each rule.

Tab. 3. Results of application of priority rules 1 to 7 on the example project

Rule number  56453534251412 ,,,,,, λ PL

1 {5,4,4,2,2,2,1}  6,5,5,4,5,3,4,3,5,2,4,1,2,1

2 {5,9,7,10,9,11,8}  2,1,5,2,6,5,5,3,4,1,4,3,5,4

3 {0.176,0.4,0.4,0.4,0.4,0.4,0.4}  2,1,6,5,5,4,5,3,4,3,5,2,4,1

4 {16,10,9,6,3,3,0}  6,5,5,4,5,3,4,3,5,2,4,1,2,1

5 {0.4,0.22,0.22,0.22,0.22,0.22,0.4}  5,4,5,3,4,3,5,2,4,1,6,5,2,1

6 {0.8,2.9,2.3,3.2,2.8,4.3,2.6}  2,1,5,2,6,5,5,3,4,1,4,3,5,4

7 {5.2,6.8,6.8,4.8,4.4,5.9,6.8}  5,3,4,3,2,1,5,4,6,5,5,2,4,1

240 M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness …

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3



5. Computational Experiments
5-1. Benchmark Problem Sets

We have coded the procedure in Visual C++6 and

performed all computational experiments on a PC

Pentium IV 3GHz processor with 1024 MB of internal

memory. In order to evaluate the performance of our

algorithm, we used test problems generated by Ranjbar

et al. [5].

The test problems are generated for full factorial of

three parameters, i.e. the number of activities (n), the

network shape parameter, order strength
2
 (OS), and the

resource factor
3
 (RF).

They consider five values 20, 22, 24, 26 and 28 for n,

three values 0.2, 0.35 and 0.5 for OS and three values

0.1, 0.2 and 0.3 for RF. For each combination of n, OS

and RF, they generate three test instances giving rise to

135 test instances. We also set the number of resource

to m=3.

Also, for each resource r, we select r ,
r and rw

randomly from discrete uniform distributions  nU ,1 ,









 

 rr Ni

i

Ni

ir ddU 2.1,8.0 and  mU ,1 respectively.

We run our algorithm for three values of TC as

TC=100, 1000 and 10000.

5-2. Parameter Setting

One of the benefits of GRASP is that it has smaller

number of parameters than other metaheuristics. Since

we have used reactive version of GRASP, the

parameter  is set automatically.

For this purpose, we consider set  as  ={0, 0.05,

0.1, …, 1} in which parameter  is changed in a range

between zero and one with step size of 0.05. The case

2 The order strength is the number of comparable intermediate

activity pairs divided by the maximum number n(n-1)/2 of such

pairs, and is a measure for the closeness to a linear order of the
technological precedence constraints in C (cfr. Mastor, 1970).
3 The resource factor shows how many numbers of resources are

used in average by each of the activities.

=0 corresponds to a pure greedy algorithm, while

=1 is equivalent to a random construction. Figure 2

shows the frequency of different values of  used in

TC iterations when priority rule 4 (the best priority

rule) is used. All three curves have a bell-shape in

which maximum frequency for TC=100 occurs for

=0.35 while for TC=1000 and 100000 occur for

=0.4.

5-3. Comparative Computational Results

In this section, we first compare the results of the

algorithm obtained based on different priority rules.

Next, a comparison between reactive and nonreactive

versions of the algorithm is done. In continue, we

investigate the impact of local search and path-

relinking procedures. Comparison criterion is average

percent deviation (APD) from optimal solutions,

obtained by Ranjbar et al. [5].

5-3-1. Impact of Priority Rules

Table 4 shows the APD for solutions using different

priority rules and three termination criteria. The results

show a consistent ranking of priority rules for different

values of TC.

This rank is 4, 2, 1, 5, 7, 6 and 3. Priority rule 4 that

can be considered as a combination of priority rules 1

and 2 has the smallest APD. After that, priority rules 2

and 1 have the second and third smallest APD,

respectively.

Priority rule 3, based on resource requirements, has

largest APD.

It can be concluded that priority rules in which

durations and precedence relations of activities are

contributing have better results than priority rules in

which resource requirements of activities are

contributing.

The average CPU run time for TC=100, 1000 and

10000 are 0.05, 0.63 and 6.84 seconds.

It is interesting to report that this ranking is consistent

with the results reported by Ranjbar et al. [5].

Fig. 2. Frequency of different values of α

M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness … 241

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

Tab. 4. APD for different priority rules and termination criteria
TC

10000 1000 100 pr

19.0 30.3 65.2 1

15.7 27.3 64.6 2

36.4 58.6 92.1 3

12.4 25.4 61.7 4

24.1 41.8 73.0 5

31.3 53.3 81.9 6

29.3 45.1 75.4 7

5-3-2. Comparison of Reactive and Nonreactive

Versions of the Algorithm

In this section, we compare two versions of our

algorithm, reactive and nonreactive. For this

comparison, we consider only priority rule 4, the best

priority rule, and set parameter  for different values of

TC based on fine tuning.

For nonreactive version, we set  to 0.35 when

TC=100 and set it to 0.4 when TC=1000 and 10000.

The results of nonreactive version of the algorithm in

which  has a fixed value are shown in Table 5. Also,

we have shown in this table the results of the cases =0

and 1.

Tab. 5. APD for different values of  and termination criteria

TC

10000 1000 100 

52.3 61.6 90.6 0.00

- - 78.9 0.35

20.3 38.7 - 0.40

68.7 79.5 107.8 1.00

The results show that the reactive version of algorithm

outperforms the nonreactive version. When we

consider TC=100 iterations, APD in nonreactive

version is 78.9 while this value in reactive version is

61.7, shown in Table 4. Also, when we set TC to 1000

and 10000 iterations, APDs in nonreactive version are

38.7 and 20.3 while corresponding values in reactive

version are 25.4 and 12.4, respectively. Furthermore,

pure greedy algorithm (the case =0) and random

algorithm (the case =1) give rise to worse results than

other cases. If we compare the results of the first and

the last rows of Table 5, we see that pure greedy

algorithm is better than random algorithm.

5-3-3. Impact of Local Search Procedure

Table 6 shows the results obtained from running the

algorithm without local search procedure in which

reactive version is considered.

Tab. 6. APD for the algorithm without local search procedure

TC

10000 1000 100 pr

25.9 40.1 84.7 1

25.4 36.8 81.0 2

47.6 63.8 105.4 3

21.1 35.3 75.8 4

32.7 48.5 87.3 5

36.9 55.5 97.3 6

41.2 52.9 92.6 7

If we compare the results of tables 4 and 6, we surely

conclude that for all priority rules and termination

criteria, local search has improved APD. Of course,

when we exclude the local search procedure, the CPU

run times are a bit smaller than the case in which local

search in included. The new average CPU run times

corresponding to TC=100, 1000 and 10000 are 0.04,

0.39 and 4.51 seconds.

5-3-4. Impact of Path-Relinking Procedure

In order to evaluate the impact of path-relinking

procedure, we exclude it from the algorithm and

obtained new results, shown in Table 7.

242 M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness …

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

Tab. 7. APD for the algorithm without path-relinking procedure

TC

10000 1000 100 pr

22.2 31.9 69.3 1

20.2 28.8 68.3 2

39.6 59.5 95.4 3

18.3 28.0 62.5 4

28.9 43.5 76.7 5

33.9 54.7 84.6 6

33.4 47.7 79.5 7

Similar to previous section, it is seen that for all

priority rules and termination criteria the results are

worse than the results of Table 4. Of course, it should

be noticed that the CPU run times are decreased when

PR is excluded from the algorithm. The new average

CPU run times corresponding to TC=100, 1000 and

10000 are 0.04, 0.35, 3.87 seconds.

6. Summary and Conclusions
In this paper, we presented the problem of

minimizing total weighted resource tardiness penalty

costs in the resource-constrained project scheduling.

We developed a metaheuristic algorithm, based on

GRASP and path-relinking, accompanied with a local

search procedure. We considered two reactive and

nonreactive versions of algorithm and showed, using

computational experiments, that reactive version of the

algorithm outperforms nonreactive version. Also, we

used seven priority rules to bias the random selection

of elements from RCL. These priority rules are defined

based on three characteristics of activities: precedence

relations, durations and resource requirements. The

computations experiments showed the best results are

for the priority rule defined based on the combination

of two characteristics, i.e. durations and precedence

relations of activities. Moreover, we demonstrated the

improving role of local search and path-relinking

procedures using computational experiments.

An important research direction that might be pursued

in the future is extension of developed priority rules in

this work. Also, developing other metaheuristic

algorithms for problem defined in this paper is an

interesting research topic.

References
[1] Blazewicz, J., Lenstra, J., Rinnooy-Kan, A.H.G.,

Scheduling Subject to Resource Constraints-

Classification and Complexity, Discrete Applied

Mathematics 5, 1983, pp. 11- 24.

[2] Demeulemeester, E., Herroelen, W., Project Scheduling:

A Research Handbook, Kluwer Academic Publishers

2002.

[3] Neumann, K., Schwindt, C., Zimmermann, J., Project

Scheduling with Time Windows and Scarce Resources,

Springer 2002.

[4] Herroelen, W., Project Scheduling-Theory and Practice,

Production and Operations Management 14, 2005, pp.

413-432.

[5] Ranjbar, M., Khalilzadeh, M., Kinafar, F., Etminani, K.,

An Optimal Procedure for Minimizing Total Weighted

Resource Tardiness Penalty Costs in the Resource-

Constrained Project Scheduling Problem, Computers

and Industrial Engineering 62, 2012, pp. 264-270.

[6] Khalilzadeh, M., Kianfar, F., Shirzadeh Chaleshtari, A.,

Shadrokh, S., Ranjbar, M., A Modified PSO Algorithm

for Minimizing the Total Costs of Resources in

MRCPSP, Mathematical Problems in Engineering, 1,

2012, pp.1-18.

[7] Vanhoucke, M., Demeulemeester, E., Herroelen, W., An

Exact Procedure for the Resource-Constrained

Weighted Earliness-Tardiness Project Scheduling

Problem, Annals of Operations Research 102, 2001,

pp. 79-196.

[8] Nadjafi, B.A., Shadrokh, S., A Branch and Bound

Algorithm for the Weighted Earliness-Tardiness

Project Scheduling Problem with Generalized

Precedence Relations, Scientia Iranica, 16, 2009, pp.

55-64.

[9] Bellman, R.E., On a Routing Problem, Quarterly Applied

Mathematics, 16, 1985, pp.87-90.

[10] Aiex, R.M., Resende, M.G.C., Ribeiro, C.C., Probability

Distribution of Solution Time in GRASP: an

Experimental Investigation, Journal of Heuristics, 8,

2002, pp. 343-373.

[11] Feo, T.A., Resende, M.G.C., Greedy Randomized

Adaptive Search Procedures, Journal of Global

Optimization, 6, 1995, pp. 109-133.

[12] Feo, T.A., Resende, M.G.C., Smith, S., A Greedy

Randomized Adaptive Search Procedure for Maximum

Independent Set, Operations Research, 42, 1994, pp.

860-878.

[13] Hart, J.P., Shogan, A.W., Semi-Greedy Heuristics: an

Empirical Study, Operations Research Letters, 6, 1987,

pp. 107-114.

[14] Glover, F., Tabu Search and Adaptive Memory

Programming—Advances, applications and challenges.

In: R.S. Barr, R.V. Helgason and J.L. Kennington

(eds.), Interfaces in Computer Science and Operations

Research. Kluwer, 1996, pp. 1–75.

[15] Glover, F., Laguna, M., Tabu Search, Kluwer Academic

Publishers, 1997.

http://www.hindawi.com/15480251/
http://www.hindawi.com/56461878/
http://www.hindawi.com/42624309/
http://www.hindawi.com/80657956/
http://www.hindawi.com/51380125/

M. Ranjbar A Hybrid GRASP Algorithm for Minimizing Total Weighted Resource Tardiness … 243

International Journal of Industrial Engineering & Production Research, September 2012, Vol. 23, No. 3

[16] Glover, F., Laguna, M., Marti, R., Fundamentals of

Scatter Search and Path Relinking, Control and

Cybernetics, 39, 2000, pp. 653–684.

[17] Laguna, M., Marti, R., GRASP and Path Relinking for 2-

Layer Straight ;Line Crossing Minimization,

INFORMS Journal on Computing, 11, 1999, pp. 44–

52.

[18] Ribeiro, C.C., Uchoa, E., Werneck, R.F., A Hybrid

GRASP with Perturbations for the Steiner Problem in

Graphs, INFORMS Journal on Computing, 14, 2002,

pp. 228–246.

[19] Resennde, M.G.C., Marti, R., Gallego, M., Duarte, A.,

GRASP and Path-Relinking for the Max-Min Diversity

Problem, Computers & Operations Research, 37, 2010,

pp. 498-508.

[20] Alvarez-Valdes, R., Crespo, E., Tamarit, J.M., Villa, E.,

GRASP and Path-Relinking for Project Scheduling

under Partially Renewable Resources, European

Journal of Operational Research, 189, 2008, pp.1153-

1170.

[21] Ranjbar, M., De Reyck, B., Kianfar, F., A Hybrid Scatter

Search for the Discrete Time/Resource Trade-off

Problem in Project Scheduling, European Journal of

Operational Research, 193, 2009, pp. 35-48.

[22] Prais, M., Ribeiro, C.C., Reactive GRASP: an

Application to a Matrix Decomposition Problem in

TDMA Traffic Assignment, INFORMS Journal on

Computing, 12 2000, pp. 164–176.

[23] Bresina, J.L., Heuristic-Biased Stochastic Sampling, In:

Proceedings of the Thirteenth National Conference on

Artificial Intelligence. Portland, 1996, pp. 271–278.

[24] Lawler, E.L., Combinatorial Optimization: Networks

and Matroids, Holt, Rinehart and Winston, New York

1976.

