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In this paper, we consider scheduling of project networks under 

minimization of total weighted resource tardiness penalty costs. In 

this problem, we assume constrained resources are renewable and 

limited to very costly machines and tools which are also used in other 

projects and are not accessible in all periods of time of a project. In 

other words, there is a dictated ready date as well as a due date for 

each resource such that no resource can be available before its ready 

date but the resources are allowed to be used after their due dates by 

paying penalty costs depending on the resource type. We also assume, 

there is only one unit available of each resource type and no activity 

needs more than it for execution. The goal is to find a schedule with 

minimal total weighted resource tardiness penalty costs. For this 

purpose, we present a hybrid metaheuristic procedure based on the 

greedy randomized adaptive search algorithm and path-relinking 

algorithm. We develop reactive and non-reactive versions of the 

algorithm. Also, we use different bias probability functions to make 

our solution procedure more efficient. The computational experiments 

show the reactive version of the algorithm outperforms the non-

reactive version. Moreover, the bias probability functions defined 

based on the duration and precedence relation characteristics give 

better results than other bias probability functions. 
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1

1. Introduction  

The goal of the resource-constrained project 

scheduling problem (RCPSP) is to minimize the 

duration of a project subject to finish-to-start type 

precedence constraints and renewable resources 

constraints. It is shown in Blazewicz et al. [1] that the 
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RCPSP, as a generalization of the job-shop scheduling 

problem, is NP-hard in the strong sense. A large 

number of exact and heuristic procedures have been 

proposed to construct workable baseline schedules for 

this problem; see Demeulemeester and Herroelen [2], 

Neumann et al. [3] for recent overviews and Herroelen 

[4] for a discussion on the link between theory and 

practice. 

In some projects, some expensive resources like 

especial types of crane, tunnel boring machines, very 

expert humans and etc. are often hired out of the 

project. Companies that lease these costly resources 
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have a plan for leasing them and consequently this 

schedule dictates ready dates and due dates to the 

customers.  

We assume these types of resources are constrained 

renewable and are not available in all periods of time 

of a project horizon. We also assume only these 

resources are constrained while other resources are 

unlimited. In most of the projects, usually one unit of 

each expensive resource type is hired and no activity 

needs more than it for execution. For each resource 

type, we consider a ready date, a due date and a penalty 

cost.  

No resource can be accessible before its ready date but 

these resources are permitted to be released after their 

due dates by paying penalty costs. The goal is to find a 

schedule with minimal total weighted resource 

tardiness penalty costs. Thus, we face to a RCPSP 

under minimization of total weighted resource 

tardiness penalty cost, shown by the RCPSP-

TWRTPC. The RCPSP-TWRTPC was introduced by 

Ranjbar et al. [5] and they presented a branch-and-

bound algorithm for it.  

Also, Khalilzadeh et al. (2012) introduced a 

generalized version of the RCPSP-TWRTPC in which 

the multi mode projects are considered. They 

developed a particle swarm metaheuristic for the 

proposed problem.  

Other related scheduling problems in the literature are 

in fields of project scheduling and machine scheduling 

with objective functions linked to the tardiness. In all 

of these problems, the issue of tardiness is proposed for 

activities or jobs and not for resources or machines. 

Vanhoucke et al. [7] have developed a branch-and-

bound (B&B) algorithm accompanied with an exact 

recursive search procedure for the RCPSP under 

earliness/tardiness objective. Also, Nadjafi and 

Shadrokh [8] developed a B&B algorithm for the 

weighted earliness-tardiness project scheduling 

problem with generalized precedence relations.  

The contributions of this article are two: (1) we 

develop reactive and nonreactive versions of a hybrid 

metaheuristic for the RCPSP-TWRTPC; (2) we 

develop seven biased probability functions to make 

algorithm more efficient and show, using 

computational results, that biased probability functions 

defined on the basis of duration and precedence 

relation characteristics outperforms others.  

The remainder of this article is organized as follows. 

Problem modeling and formulation are provided in 

Section 2. Section 3 presents our solution 

representation while Section 4 is devoted to our 

developed metaheuristic algorithm. The computational 

experiments are presented in Section 5. Finally, 

summary and conclusions are given in Section 6.  

 

2. Problem Modeling and Formulation 
The RCPSP-TWRTPC can be represented by a 

disjunctive graph  DCNG ,, . Graph G has an 

activity-on-node (AON) representation in which 

 1,...,1,0  nN  indicates the set of activities (nodes) 

where dummy activities 0 and n+1 represent start and 

end of the project. The set of conjunctive arcs 

  NjijijiC  ,,;,  consists of arcs 

representing technical finish-to-start type precedence 

relations among activities where ji   implies activity 

j can be started after finishing of activity i. Let 

 mR ,...,2,1  be the set of constrained renewable 

resources and rN  the set of activities which need (one 

unit of ) resource Rr   for execution. For each pair 

of activities , ; 1,...,ri j N r m  , there is a 

disjunctive arc i j  between nodes i and j requiring 

the resource .r Thus, we present a set of disjunctive 

arcs as  , ; , : , rD i j i j r R i j N     such 

that we should determine ji   or j i because 

availability of each resource is at most one unit in each 

period of time and two activities i and j where 

Dji ,  can not be processed in parallel. For each 

activity i, the parameter id  indicates its duration 

where 010  ndd . In addition, for each resource r, 

r , r  and rw  show the ready date, due date and 

weight of this resource, respectively. In order to embed 

the resource ready dates in the graph representation, we 

add one node corresponding to each resource to the 

project network.  

For the resource r, this node displays an activity with 

duration r  which is direct successor of the start 

dummy activity and direct predecessor of every 

activity rNi  . Also, we consider these arcs as the 

elements of the set of conjunctive arcs C. 

Table 1 shows the resource information of a RCPSP-

TWRTPC instance with n=6 real activities and m=2 

resources while the corresponding graph is depicted in 

Figure 1 (Ranjbar et al. [5]). In this figure, the number 

shown above each node indicates activity duration and 

the number(s) below indicate the resources required for 

activity execution. The nodes labeled  and   

correspond to ready times of resources 1 and 2, 

respectively. Precedence relations of each of these 

nodes with dummy node 0 and the nodes which require 

resources 1 and 2 are depicted with bold arcs. Also, the 

disjunctive arcs are depicted with dashed lines while 

conjunctive arcs are shown as regular arcs. Any 

solution of a RCPSP-TWRTPC instance is shown by 

the vector  nsss ,...,, 21S  where is  is an non-

negative integer and shows the start time of activity i.  

Given a policy for scheduling, such as earliest start 

time schedule, this solution S is equivalent to a 

selection )(D , denoting a selection of disjunctive 

arcs from D, as long as the selection )(D  has one and 

only one arc from every pair ji  , and the resulting 
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graph  )(,, DCNG   is not cyclic. Conversely, any 

selection )(D  satisfying the above properties 

corresponds to a feasible schedule.  

Let ),( jiL  denote the length of the longest path from 

node i to node j in graph  )(,, DCNG   (if there is 

no path between i and j, then ),( jiL is not defined). 

The (earliest) finish time of activity i,
iii dsf  , 

equals to ),0( iL  and can be computed using the 

algorithm of Bellman [9] with complexity NO . 

The release time of resource r shown by rc  equals to 

 i
Ni

r fc
r

 max  and the tardiness of this resource is 

calculated as  0,max rrr cT  . Then, the total 

weighted resource tardiness penalty cost equals to 




m

r

rrTw
1

. 

 
Tab.1. Resource information of the example project 

Resource (r) 
r  r  rw  rN  

1 1 18 3 {1,2,4,5} 

2 4 22 4 {3,4,5,6} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The RCPSP-TWRTPC can be formulated as the 

following linear integer programming model using 

variables 
rri Tcs ,,  and 

ijX  where for all 

1,,  ijXDji  if jiji   and 0ijX  if 

ijji  . 

 





m

r

rrTwZ
1

min  (1) 

Subject to:  

; 1,..., ;r i i rc s d r m i N     (2) 

; 1,...,r r rT c r m    (3) 

0; 1,...,rT r m   (4) 

; 1,..., ;i r rs r m i N    (5) 

 ; ,j i is s d i j C     (6) 

 1 ; ,j i i ijs s d M X i j D       (7) 

; ,i j j ijs s d MX i j D      (8) 

 , , ; 0,1,..., 1; 1,2,..., and , : 0,1i r r ijs c T i n r m i j D X      Z  (9) 

  

The objective function (1) represents the minimization 

of the total weighted resource tardiness penalty costs. 

Constraint (2) shows that the release time of each 

resource is not less than the finish time of activities 

which require that resource. Constraints (3) and (4) 

ensure that 
rT  is equal to  0,max rrc  . Constraint 

Fig.1. Graph of the example project 
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(5) makes the starting times of all activities greater 

than or equal to the ready dates of their corresponding 

resources. Constraint (6) represents the technical 

precedence relations or conjunctive constraints while 

constraints (7) and (8) relate to the resource or 

disjunctive constraints. Finally, constraint (9) in which 


Z indicates the set of non-negative integers, ensures 

that variables ri cs ,  and 
rT  are non-negative integers 

and 
ijX  is a binary variable. 

 

3. Solution Representation 
Our constructive heuristic algorithm uses a 

schedule representation to encode a project schedule 

and a schedule generation scheme to translate the 

schedule representation to a schedule S. In our 

problem, the schedule generation scheme determines 

how a feasible schedule is constructed by assigning 

starting times to the activities, whereby disjunctive arcs 

are converted to conjunctive arcs by schedule 

representation. We represent each solution of the 

RCPSP-TWRTPC using a binary list called direction 

list (DL) and shown by  
D

eeDL ,...,1 . Each ke  in 

DL represents a direction for disjunctive arc Dji ,  

and is a binary variable. It is one if we consider 

disjunctive arc ji, as conjunctive arc  ji,  and zero, 

otherwise. It should be noticed that to construct DL, we 

first sort elements of  jiD ,  on the basis of non-

decreasing order of i in ji,  (using smallest j as a tie-

breaker). Then, ke  of DL relates to the 
thk sorted 

ji, , ||,...,1 Dk  . For the example project, we have 

 6,5,5,4,5,3,4,3,5,2,4,1,2,1D  and the 

optimal solution, found by enumeration, of this project 

is obtained with 

 1,1,0,0,1,1,1 7654321  eeeeeeeDL  

corresponding to the following arcs: (1,2), (1,4), (2,5), 

(4,3), (5,3), (4,5) and (5,6). Each solution of the 

RCPSP-TWRTPC can be easily translated to a 

schedule S using the well-known critical path method 

(CPM), shown by S=CPM(DL). The optimal solution 

corresponding to the above mentioned DL is 

S=(1,4,17,6,12,21) with 8 units of tardiness penalty 

cost. 

 
4. GRASP and Path-Relinking 

Below, we discuss GRASP and path-relinking as a 

general heuristic procedure and describe the overall 

structure of our search procedure for resolution of the 

RCPSP-TWRTPC-solutions.  

 
4-1. General Overview 

In the following we briefly describe general GRASP 

and path-relinking procedures.  

4-1-1. GRASP 

A greedy randomized adaptive search procedure 

(GRASP) is a multi-start and iterative process (Aiex et 

al. [10]; Feo and Resende [11]; Feo et al. [12]). Each 

GRASP-iteration consists of two phases: in a 

construction phase, a feasible solution is produced and, 

in a local-search phase, a local optimum in the 

neighborhood of the constructed solution is sought. 

The best overall solution is kept as the result. 

In the construction phase, a feasible solution is 

iteratively constructed, one element at a time. The 

basic construction phase in GRASP is similar to the 

semi-greedy heuristic proposed independently by Hart 

and Shogan [13]. At each construction iteration, the 

choice of the next element to be added is determined 

by ordering all candidate elements (i.e. those that can 

be added to the solution) in a candidate list with respect 

to a greedy function. This function measures the 

benefit of selecting each element. The heuristic is 

adaptive because the benefits associated with every 

element are updated at each iteration of the 

construction phase to reflect the changes brought on by 

the selection of the previous element. The probabilistic 

component of a GRASP resides in the fact that we 

choose one of the best candidates in the list but not 

necessarily the top candidate; the list of best candidates 

is called the restricted candidate list. It is almost always 

beneficial to apply a local-search procedure to attempt 

to improve each constructed solution. 
 

4-1-2. Path-Relinking  

Path-relinking is an enhancement to the basic GRASP 

procedure, leading to significant improvements in 

solution quality. Path-relinking was originally 

proposed by Glover [14] as an intensification strategy 

exploring trajectories connecting elite solutions 

obtained by tabu search or scatter search (see Glover 

and Laguna [15] and Glover et al. [16]). Starting from 

one or more elite solutions, paths in the solution space 

leading towards other elite solutions are generated and 

explored in the search for better solutions. This is 

accomplished by selecting moves that introduce 

attributes contained in the guiding solutions. Path-

relinking may be viewed as a strategy that seeks to 

incorporate attributes of high quality solutions, by 

favoring these attributes in the selected moves. 

The use of path-relinking within a GRASP procedure, 

as an intensification strategy applied to each locally 

optimal solution, was first proposed by Laguna and 

Marti [17]. It was followed by several extensions, 

improvements, and successful applications (see Ribeiro 

et al. [18], Resennde et al. [19] and Alvarez et al. [20]). 
 

4-2. Adapting GRASP and Path-Relinking to Our 

Setting 

4-2-1. Global Structure of the Algorithm 

The pseudo-code of global structure of our GRASP and 

path-relinking implementation is illustrated in 

Algorithm 1. Our basic algorithm maintains a set of 

elite solutions (ES) to combine them in step 9 using 
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path-relinking algorithm. This set is initializes as an 

empty set in the first step. A while-loop is repeated 

until termination criterion (TC), a specified number of 

iterations, is met. At the beginning of this loop, a DL is 

built using building direction list (BDL) procedure 

(Section 4.2.2). Next, generated DL is evaluated using 

CPM and is improved using local search (LS) 

procedure (Section 4.2.3). 

In steps 6 to 11, we decide to add DL to the ES or not. 

For this purpose, we define Max_Elite as the maximum 

size of ES (size of ES is shown by |ES|) and 

 )(CPM),(CPM iDLDL as the difference between DL 

and iDL , which is the number of different start times 

for identical activities in CPM(DL) and )(CPM iDL  

divided by n. The first condition for each DL to be 

included in ES is that it should be different from all 

elements in ES. This condition is checked in step 6 and 

if it is not satisfied, we go to the end of while loop at 

step 13 and discard generated DL. If the first condition 

is assured, the next condition is that the size of ES to be 

smaller than the Max_Elite. If DL is not added to ES in 

step 7, we should follow steps 8 to 12. In step 8, we 

select a direction list from ES on the basis of a biased 

random sampling strategy. Random sampling is biased 

using probability vector   EliteMaxqq _1 ,...,Q  in which  





ESj

jii bbq  and   i
i

i ZDLDLb )(CPM),(CPM where 

iDL  is the 
thi element of ES and iZ  stands for the 

value of the objective function for the solution 

)( iDLCPM  where i=1,..,Max_Elite. For each iDL , 

having smaller objective functions and higher 

differences with DL gives rise to its selection chance. 

The selected direction list, shown by LD  , is 

combined with DL using path-relinking (PR) procedure 

developed by Ranjbar et al. [21] (Section 4.2.4). In step 

11, we compare the output of PR procedure with the 

worst element of ES, shown by LD  . If LD  is better 

than LD  , it is replaced by LD  . Whenever TC is 

met, the best found solution is returned. 

 

Algorithm 1: Global algorithm structure 

1: ES= 

2: while TC not met do 

3:    Build DL using BDL 

4:    S=CPM(DL)  

5:    LS(DL)DL   

6:    if   0)(CPM),(CPM:  ii DLDLESDL  go to step 13. 

7:    else if EliteMaxES _  then DLESES   

8:    else  

9:       select LD  randomly from ES using probability vector Q 

10:       LDDLPRDL  ,  

11:      if DL is better than the worst element LD   in ES then   DLLDESES  \  

12:   end else 

13: end while 

14: Return the best found solution 

 
4-2-2. Building Direction List Procedure 

This is an iterative algorithm and in each iteration, at 

least one of the elements of  
D

eeDL ,...,1  is set to 

zero or one. For each unset element of DL, in each 

iteration, two candidate elements 1,0 are defined in a 

candidate list CL.  

Thus, at the beginning CL has ||2 D elements. In an 

iteration, let u as the number of unset elements of DL. 

Consequently, there are a total of u zeros and total of u 

ones in the corresponding CL. One of these zeros or 

ones is selected, as explained in the Algorithm 2. If the 

selected item is zero (one), then its corresponding 

element in D is set to zero (one). To assure that the 

network resulting from the generated DL is not acyclic, 

a path matrix PM is defined and used in the algorithm 

(Ranjbar et al. [5]). PM is an (m+n+2)(m+n+2) matrix 

in which 1),( jiPM  iff there exists a path from node i 

to node j and 0),( jiPM , otherwise. 

In each iteration of BDL, one element is selected from 

a restricted candidate list (RCL) to be set in DL. This 

element is selected by a biased random procedure. In 

order to make bias random selection of elements, we 

use seven rules, defined by Ranjbar et al. [5], and name 

each of them a priority rule (pr). Priority list (PL), built 

in step 2, is a sorting of disjunctive arcs based on 

priority rule pr, see Section 4.3.  

In step 3, we determine that whether the algorithm to 

be reactive or nonreactive by selecting value(s) for . 

If  is fixed, we have nonreactive version of the 

algorithm but if at each iteration,  is selected from a 

discrete set of possible values, the reactive version of 

the algorithm is chosen.  
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Algorithm 2: Building direction list procedure 
1: Create CL and PM 

2: Build PL based on priority rule pr   

3: Select  from set  randomly using probability vector P 

4: DL= 

5: Calculate the incremental penalty cost )(eZ for all CLe  

6: while CL do 

7:     CLeeZZ  |)(minmin  

8:     CLeeZZ  |)(maxmax  

9:     )()(| minmaxmin ZZZeZCLeRCL    

10:   Select an element e from the RCL randomly based on vector   

11:   Insert e in corresponding position of DL 

12:   Update PM and CL 

13:   Recalculate the incremental penalty costs; 

14: end while 

15: Update vector P 

16: Return DL 

 

In the reactive version, the selection of  is guided by 

the solution values found in the previous iterations. 

One way to accomplish this is to use the rule proposed 

by Prais and Ribeiro [22]. Let  k ,...,1 be the 

set of possible values for . In each iteration, i  has 

the chance of ip  of being selected given by 

probability vector  kpp ,...,1P where initially 

kikpi ,...,1;1  . Furthermore, let *Z  be the 

objective function value of the best found solution and 

let iA  be the average objective function value of all 

solutions found using kii ,...,1;   . The 

selection probabilities are updated (step 15)  by taking 





k

j

jii aap
1

, with 
ii AZa *  for i=1,…,k. In step 

4, we initialize DL as an empty set. In the next step, we 

calculate the incremental tardiness penalty cost 

corresponding to all CLe , shown by Z(e). In 

continue, a while loop is repeated until CL is not 

empty. If 
minZ and 

maxZ show the minimum and 

maximum of incremental tardiness penalty cost for all 

CLe , we define RCL as 

 )()(| minmaxmin ZZZeZCLeRCL   .  

In step 10, we select an element from RCL by a biased 

random procedure, proposed by Bresina [23]. For this 

purpose, we rank the elements of RCL based on 

priorities specified by PL in which identical rank is 

considered for both one and zero values of each 

disjunctive arc. Let )(er be the rank of RCLe , we 

define  
RCL

 ,...,1π  as the probability vector for 

selecting e from RCL in step 10, where e is : 

 

 





RCLe

e
er

er

)(1

)(1
  

   (10) 

In the next step, selected member element RCLe  is 

inserted in corresponding element of  DL.  

In step 11, the CL and PM are updated as follows. 

First, we remove from CL the element which contains e 

and also the element indicating opposite direction for 

the disjunctive arc associated to the selected element e. 

Second, if selected element e corresponds to arc  ji, , 

we update PM using four following rules:  
 

a)   1, jiPM ,   

 

b)   )(;1, jsuckkiPM  ,   

 

c)   )(;1, ipredlilPM    

 

d)   )(,)(;1, jsuckipredlklPM  .  

 

In these four rules, pred(i) and suc(j) indicate all (direct 

and indirect) predecessors and successors of activity i 

respectively, initialized based on set C and is updated 

whenever a new conjunctive arc is added. Rule (a) 

shows that arc ji   creates a path between nodes i 

and j.  

Also, rule (b) indicates that arc ji   builds a path 

between node i and every node of suc(j) while rule (c) 

shows that this new added arc creates a path between 

every node of pred(i) and node j.  

Finally, the last rule demonstrates that arc ji   

builds a path between every node of pred(i) and every 

node of suc(j). Also, for each Dji ,  that 

 jiPM , has been changed after updating, we remove 

both zero and one elements, corresponding to this 

disjunctive arc, from CL and add the element 

corresponding to   1, jiPM  to DL. In step 13, the 

incremental tardiness penalty costs are recalculated and 

final DL is returned in step 16. 
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4-2-3. Local Search Procedure 

The local search procedure is illustrated by pseudo-

code in Algorithm 3. Let 
*G  be the input graph with 

direction list *DL . In the first step, graph 
*G  which 

corresponds to the solution  ** CPM GS  and 

objective function
*Z  are taken as inputs. Next, we 

change the value of each element *DLei   from zero 

to one or vice versa while other elements are 

unchanged. This changes the direction of related 

conjunctive arc and is shown by )( ieinv . In step 4, we 

update graph 
*G  and check its feasibility using Floyd-

Warshal algorithm (Lawler [24]). If 
*G is cyclic, we 

call repairing procedure (RP), shown in Algorithm 4,  

to make 
*G  feasible. Of course, the output of RP is 

not always a feasible solution and in this case, we go to 

the next i in step 2. In the repairing procedure, we 

change values of some DLe j   except j i to 

remove all loops from 
*G . We show the output graph 

of RP by G. Also, if changing ie  does not result in a 

cyclic graph, we only let 
*GG   in step 8. This 

procedure is repeated for all elements of *DL  and 

whenever an improvement is obtained, the input 

solution *
S  and its corresponding objective function 

*Z are updated. Finally, the best found solution in 

neighborhood of *
S or itself is returned as output 

solution. In the RP, the inputs are graph 

 )(,, ** DCNG   where )(* D is specified using 
*DL and index i. First of all, we check possibility of 

repairing by letting )( iearcCC   where )( iearc  

denotes the directed arc corresponding to ie . Since the 

graph in which none of disjunctive arcs are fixed is 

acyclic, existence of any loop in  CNG ,  implies 

that no feasible solution can be found while )( iearc is 

included in the project network. In this case, we return 

"infeasible" as output; otherwise, based on order 

specified by *DL , we include directed arcs 

corresponding to *DLe j  one by one in graph G. 

Whenever a loop is detected, we should include 

))(( jeinvarc  instead of )( jearc  in graph G. 

 

Algorithm 3: Local search procedure 

1: Let 
*Z be the objective function of input solution 

*
S  where  ** CPM GS  

2: for i=1 to D  do 

3:    )( ii einve   

4:    Update 
*G  

5:    if  
*G is cyclic, then ),( * iGRP . 

6:    if ),( * iGRP is infeasible, then go to step 2. 

7:    else ),( * iGRPG   

8:    S=CPM(G) 

9:    let Z as the objective function of graph G 

10:    if 
*ZZ  , then ( ZZ *

 and SS *
) 

11: end for 

12: Return 
*

S  
 

Algorithm 4: Repairing procedure 

1: get 
*G and i as inputs. 

2: Let )( iearcCC   

3: if  CNG ,  is cyclic, then go to step 8 

4: for j=1 to D  and ij   do 

5:   )( jearcCC   

6:    if  CNG ,  is cyclic, then   ))(()(\ jj einvarcearcCC        

7: end for 

8: Return G  

9: Return "infeasible". 
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4-2-4. Path-Relinking Procedure 

The idea of our path-relinking procedure, illustrated in 

Algorithm 5, is taken from Ranjbar et al.2009 [21]. In 

the first step, we get two direction lists DL  and LD 
as inputs. In the second step, we assign DL  to initial 

direction list ( inDL ) and LD   to guiding direction list 

(
guDL ). This assignment is exchanged in step14 and 

procedure is repeated again. Also, we define child set 

CS as the selected children using PR procedure and let 

it as an empty set in step 2. Next, we let graph set GS, a 

set of generated graphs, as an empty set. In continue, 

we construct graphs 
inG  and 

guG corresponding to 

direction lists 
inDL  and 

guDL . Steps 5 to 12 show a 

loop in which for i=1 to |D|, we check whether 
gu

i

in

i ee  or gu

i

in

i ee  . If gu

i

in

i ee  , we change 
in

ie  to 

gu

i

in

i ee  for graph 
inG  in step 8. Next, we check the 

existence of loop in 
inG . If it is the case, we apply the 

RP with following changes: remove steps 1,2,3 and 9 

from RP and consider step 4 for Dij ,...,1 . This 

is because 
guG is acyclic and 

gu

j

in

j ee   for ij ,...,1  

, and to make 
inG an acyclic graph, we need change 

some values of je  for ij  . In step 10, repaired 

graph is added to GS. At the beginning of step 13, one 

path of path-relinking has been made. In step 15, one 

solution is selected from this path and is added to CS. 

The selected solution that is a graph should have 

direction list different from all members of ES. Steps 3 

to 13 are repeated by exchanging role of initial and 

guiding direction lists. After step 14, CS has two 

members and we select the better one using CPM in 

step 15. Selected member is returned as the output of 

PR procedure in step 16. 

 

Algorithm 5: Path-relinking procedure 

1: get DL  and LD  as inputs 

2: let DLDLin  , LDDLgu   and CS= 

3: Let GS  

4: Construct graphs 
inG  and 

guG corresponding to 
inDL  and 

guDL  

5: for i=1 to |D| do 

6:    if 
gu
i

in
i ee  , then  

7:       
gu
i

in
i ee   

8:       Update 
inG  

9:       if 
inG is cyclic, then ),( iGRPG inin   

10:      
inGGSGS   

11:   end if 

12: end for 

13: select randomly one member from GS such that its direction list is different from all  

      members of ES and add it to CS. 

14: Let LDDLin  , DLDLgu  , repeat the algorithm one more time from step 3. 

15: Find better child solution and let LD  its corresponding direction list 

16: Return LD   
 

4-3. Priority rules 

In this section, we use seven priority rules, developed 

by Ranjbar et al. [5], to establish the priorities of 

disjunctive arcs in PL where priority values are 

determined by  Djiij  ,;λ . Priority rules are 

developed based on three characteristics of activities, 

i.e. precedence relations, durations and resource 

requirements. In each priority rule, we define a value 

ij  for each disjunctive arc ji  and the sequence 

of arcs in PL is made by non-increasing order of ij  

values. As a tie breaker, ij  with smaller i and then 

smaller j gets priority. Table 2, taken from Ranjbar et 

al. [5], shows the formula of each priority rule and the 

contributing characteristics. In the priority rule 1, only 

precedence relations of activities are contributing. In 

this rule, ij equals the summation of the total number 

of successors of activities i and j. Similar to priority 

rule 1, in priority rules 2 and 3 only one characteristic 

is contributing. In priority rule 2, ij  equals the 

summation of the durations of activities i and j while in 

priority rule 3 it equals the summation of r  values for 

all 
iRr   or jR  where  rrrr w    and iR  

denotes the set of required resources for execution of 

activity Ni  .  
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Each one of priority rules 4, 5 and 6 is based on the 

contribution of two characteristics. In priority rule 4, 

the precedence relations and durations are contributing, 

the summation of tails of activities i and j is considered 

as ij . Tail of activity Ni  , shown by iq , is a lower 

bound for the time period between the completion of 

activity i and the  project deadline and is calculated 

using equation (11).  
 
 

  Cjiqdq jji  ,;max  (11) 
 

Equation (11) requires initialization which is given by 

01 nq . 

Two characteristics, precedence relations and resource 

requirements are contributing in rule 5 in which ij  

equals the summation of r  values for all 
kRr   where 

k is representative of all activities belonging to at least 

one of the pred(i), pred(j), suc(i) or suc(j) and 

requiring at least one common resource with activity i 

and j.  Rule 6 is based on the combination of two 

characteristics, durations and resource requirements, 

while in the last priority rule all three characteristics 

are contributed. 

Tab. 2. Priority rules 1 to 7 

R
u

le
 n

u
m

b
e
r 

ij  

Characteristics 

Precedence 

relations 
durations 

Resource 

requirements 

1 )()( jsucisuc       

2 ji dd       

3 

 i j

r

r R R




      

4 ji qq         

5  
 

( ) ( ) ( ) ( ) , k

k i j

r

k pred i pred j suc i suc j r R

R R R


 



   
     

6 

i j

i r j r

r R r R

d d 
 

        

7  
 

( ) ( ) ( ) ( ) ,i j k

k i j

i r j r k r

r R r R k pred i pred j suc i suc j r R

R R R

d d d  
   



    

 

      

 

Table 3 illustrates the result of application of each 

priority rule on the example project. In this table, set  

and its corresponding priorities list (PL) of the 

disjunctive arcs are shown for each rule. 

 

Tab. 3. Results of application of priority rules 1 to 7 on the example project 

Rule number  56453534251412 ,,,,,, λ  PL 

1 {5,4,4,2,2,2,1}  6,5,5,4,5,3,4,3,5,2,4,1,2,1  

2 {5,9,7,10,9,11,8}  2,1,5,2,6,5,5,3,4,1,4,3,5,4  

3 {0.176,0.4,0.4,0.4,0.4,0.4,0.4}  2,1,6,5,5,4,5,3,4,3,5,2,4,1  

4 {16,10,9,6,3,3,0}  6,5,5,4,5,3,4,3,5,2,4,1,2,1  

5 {0.4,0.22,0.22,0.22,0.22,0.22,0.4}  5,4,5,3,4,3,5,2,4,1,6,5,2,1  

6 {0.8,2.9,2.3,3.2,2.8,4.3,2.6}  2,1,5,2,6,5,5,3,4,1,4,3,5,4  

7 {5.2,6.8,6.8,4.8,4.4,5.9,6.8}  5,3,4,3,2,1,5,4,6,5,5,2,4,1  
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5. Computational Experiments 
5-1. Benchmark Problem Sets 

We have coded the procedure in Visual C++6 and 

performed all computational experiments on a PC 

Pentium IV 3GHz processor with 1024 MB of internal 

memory. In order to evaluate the performance of our 

algorithm, we used test problems generated by Ranjbar 

et al. [5].  

The test problems are generated for full factorial of 

three parameters, i.e. the number of activities (n), the 

network shape parameter, order strength
2
 (OS), and the 

resource factor
3
 (RF).  

They consider five values 20, 22, 24, 26 and 28 for n, 

three values 0.2, 0.35 and 0.5 for OS and three values 

0.1, 0.2 and 0.3 for RF. For each combination of n, OS 

and RF, they generate three test instances giving rise to 

135 test instances. We also set the number of resource 

to m=3.  

Also, for each resource r, we select r , 
r  and rw  

randomly from discrete uniform distributions  nU ,1 , 









 

 rr Ni

i

Ni

ir ddU 2.1,8.0  and  mU ,1  respectively.  

We run our algorithm for three values of TC as 

TC=100, 1000 and 10000. 

 
5-2. Parameter Setting 

One of the benefits of GRASP is that it has smaller 

number of parameters than other metaheuristics. Since 

we have used reactive version of GRASP, the 

parameter  is set automatically.  

For this purpose, we consider set  as  ={0, 0.05, 

0.1, …, 1} in which parameter  is changed in a range 

between zero and one with step size of 0.05. The case 

                                                 
2 The order strength is the number of comparable intermediate 

activity pairs divided by the maximum number n(n-1)/2 of such 

pairs, and is a measure for the closeness to a linear order of the 
technological precedence constraints in C (cfr. Mastor, 1970). 
3 The resource factor shows how many numbers of resources are 

used in average by each of the activities.  

=0 corresponds to a pure greedy algorithm, while 

=1 is equivalent to a random construction. Figure 2 

shows the frequency of different values of  used in 

TC iterations when priority rule 4 (the best priority 

rule) is used. All three curves have a bell-shape in 

which maximum frequency for TC=100 occurs for 

=0.35 while for TC=1000 and 100000 occur for 

=0.4. 

 
5-3. Comparative Computational Results 

In this section, we first compare the results of the 

algorithm obtained based on different priority rules. 

Next, a comparison between reactive and nonreactive 

versions of the algorithm is done. In continue, we 

investigate the impact of local search and path-

relinking procedures. Comparison criterion is average 

percent deviation (APD) from optimal solutions, 

obtained by Ranjbar et al. [5].  

 
5-3-1. Impact of Priority Rules 

Table 4 shows the APD for solutions using different 

priority rules and three termination criteria. The results 

show a consistent ranking of priority rules for different 

values of TC.  

This rank is 4, 2, 1, 5, 7, 6 and 3. Priority rule 4 that 

can be considered as a combination of priority rules 1 

and 2 has the smallest APD. After that, priority rules 2 

and 1 have the second and third smallest APD, 

respectively.  

Priority rule 3, based on resource requirements, has 

largest APD.  

It can be concluded that priority rules in which 

durations and precedence relations of activities are 

contributing have better results than priority rules in 

which resource requirements of activities are 

contributing.  

The average CPU run time for TC=100, 1000 and 

10000 are 0.05, 0.63 and 6.84 seconds. 

It is interesting to report that this ranking is consistent 

with the results reported by Ranjbar et al. [5]. 

 

Fig. 2. Frequency of different values of α 
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Tab. 4. APD for different priority rules and termination criteria 
TC  

10000 1000 100 pr 

19.0 30.3 65.2 1 

15.7 27.3 64.6 2 

36.4 58.6 92.1 3 

12.4 25.4 61.7 4 

24.1 41.8 73.0 5 

31.3 53.3 81.9 6 

29.3 45.1 75.4 7 

 
5-3-2. Comparison of Reactive and Nonreactive 

Versions of the Algorithm 

In this section, we compare two versions of our 

algorithm, reactive and nonreactive. For this 

comparison, we consider only priority rule 4, the best 

priority rule, and set parameter  for different values of 

TC based on fine tuning.  

For nonreactive version, we set  to 0.35 when 

TC=100 and set it to 0.4 when TC=1000 and 10000. 

The results of nonreactive version of the algorithm in 

which  has a fixed value are shown in Table 5. Also, 

we have shown in this table the results of the cases =0 

and 1. 

 
Tab. 5. APD for different values of  and termination criteria 

TC  

10000 1000 100  

52.3 61.6 90.6 0.00 

- - 78.9 0.35 

20.3 38.7 - 0.40 

68.7 79.5 107.8 1.00 

 
The results show that the reactive version of algorithm 

outperforms the nonreactive version. When we 

consider TC=100 iterations, APD in nonreactive 

version is 78.9 while this value in reactive version is 

61.7, shown in Table 4. Also, when we set TC to 1000 

and 10000 iterations, APDs in nonreactive version are 

38.7 and 20.3 while corresponding values in reactive 

version are 25.4 and 12.4, respectively. Furthermore, 

pure greedy algorithm (the case =0) and random 

algorithm (the case =1) give rise to worse results than 

other cases. If we compare the results of the first and 

the last rows of Table 5, we see that pure greedy 

algorithm is better than random algorithm. 

 

5-3-3. Impact of Local Search Procedure  

Table 6 shows the results obtained from running the 

algorithm without local search procedure in which 

reactive version is considered. 

 
Tab. 6. APD for the algorithm without local search procedure 

TC  

10000 1000 100 pr 

25.9 40.1 84.7 1 

25.4 36.8 81.0 2 

47.6 63.8 105.4 3 

21.1 35.3 75.8 4 

32.7 48.5 87.3 5 

36.9 55.5 97.3 6 

41.2 52.9 92.6 7 
 

If we compare the results of tables 4 and 6, we surely 

conclude that for all priority rules and termination 

criteria, local search has improved APD. Of course, 

when we exclude the local search procedure, the CPU 

run times are a bit smaller than the case in which local 

search in included. The new average CPU run times 

corresponding to TC=100, 1000 and 10000 are 0.04, 

0.39 and 4.51 seconds. 
 

5-3-4. Impact of Path-Relinking Procedure  

In order to evaluate the impact of path-relinking 

procedure, we exclude it from the algorithm and 

obtained new results, shown in Table 7. 
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Tab. 7. APD for the algorithm without path-relinking procedure 

TC  

10000 1000 100 pr 

22.2 31.9 69.3 1 

20.2 28.8 68.3 2 

39.6 59.5 95.4 3 

18.3 28.0 62.5 4 

28.9 43.5 76.7 5 

33.9 54.7 84.6 6 

33.4 47.7 79.5 7 

 
Similar to previous section, it is seen that for all 

priority rules and termination criteria the results are 

worse than the results of Table 4. Of course, it should 

be noticed that the CPU run times are decreased when 

PR is excluded from the algorithm. The new average 

CPU run times corresponding to TC=100, 1000 and 

10000 are 0.04, 0.35, 3.87 seconds. 

 

6. Summary and Conclusions 
In this paper, we presented the problem of 

minimizing total weighted resource tardiness penalty 

costs in the resource-constrained project scheduling. 

We developed a metaheuristic algorithm, based on 

GRASP and path-relinking, accompanied with a local 

search procedure. We considered two reactive and 

nonreactive versions of algorithm and showed, using 

computational experiments, that reactive version of the 

algorithm outperforms nonreactive version. Also, we 

used seven priority rules to bias the random selection 

of elements from RCL. These priority rules are defined 

based on three characteristics of activities: precedence 

relations, durations and resource requirements. The 

computations experiments showed the best results are 

for the priority rule defined based on the combination 

of two characteristics, i.e. durations and precedence 

relations of activities. Moreover, we demonstrated the 

improving role of local search and path-relinking 

procedures using computational experiments.  

An important research direction that might be pursued 

in the future is extension of developed priority rules in 

this work. Also, developing other metaheuristic 

algorithms for problem defined in this paper is an 

interesting research topic.  
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