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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

This paper proposes two relax and fix heuristics for the simultaneous 
lot sizing and sequencing problem in permutation flow shops involving 
sequence-dependent setups and capacity constraints. To evaluate the 
effectiveness of mentioned heuristics, two lower bounds are developed 
and compared against the optimal solution. The results of heuristics 
are compared with the selected lower bound. 
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11..  IInnttrroodduuccttiioonn

                                                

   
Flow shop is one of the most widely investigated 
production and scheduling problem of the literature [1-
9]. It comprises a series of machines that perform 
operations on a production as it progresses down the 
line. A special case of flow shop that assumes the same 
order of products in all machines is called permutation 
flow shop. 
Traditionally the problem of scheduling jobs on a flow 
shop is decomposed into the sub-problems of lotsizing 
and sequencing. This is an approximate way of solving 
the problem because in general the lotsizing decision is 
dependent on the sequencing decision. Nevertheless, 
there have been several heuristics developed for each 
of the above two problems. For a more detailed review 
of the relevant work done in this area, please refer to 
[18-21]. 
Researchers have also investigated the problem of 
integrating lotsizing and sequencing decisions in the 
flow shop. Sikora et al. [18] considered a variation 
with limited intermediate buffer space and deadlines, 
and they studied the objectives of minimizing Cmax and 
inventory holding costs. They integrated the Silver-
Meal lotsizing heuristic [19], which they modified to 
deal with lot splitting, with Palmer's flow shop 
heuristic [16], which they augmented with an 
improvement procedure, and demonstrated the 
effectiveness of their approach by scheduling an actual 
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assembly line. In another paper, Sikora [17] presented 
a GA that used separate crossover and mutation 
operators for lotsizing and sequencing decisions. He 
compared this GA with the integrated approach 
presented in Sikora et al. [18] and found that the GA 
that used a population size of ten prescribed much 
better schedules with significantly less run time than 
the integrated approach. However, the performance of 
the GA was sensitive to the selection of parameter 
values and it was difficult to determine effective 
values. Lee et al. [12] presented a hybrid GA to 
minimize Cmax in the case of a finite buffer space. This 
hybrid GA incorporates SA in its mutation operation 
and pairwise-exchange improvement procedures in an 
attempt to avoid the local optima at which GAs 
frequently stop. They evaluated the performance of this 
hybrid GA in an application to an actual assembly 
plant and their computational tests showed that it 
performs better than the pure GA, specially when the 
problem size is large. 
Recently, simultaneous lot-sizing and scheduling in 
non-permutation capacitated flow shop with sequence-
dependent setups has been considered by Mohammadi 
et al. [13-14]. They proposed a mathematical 
formulation and MIP-based heuristics for the problem. 
Involving capacity constraints, setup carry over and 
variable lotsizes in production stages are the main 
feature of their model. Because of restriction in 
computation times, the quality of solutions was poor 
specially for large instances of the problem.  
To solve larger instances of problem, Mohammadi et 
al. [15] also proposed a new algorithmic approach 
based on a simplified mathematical model. In this 
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paper, instead of solving a succession of smaller MIPs, 
they would relax all binary variables of the problem. 
The resulting problem would be solved through a T-
iteration based algorithm. In a specific iteration k, 
relaxed binary variables of period k would be divided 
into two groups where members of the first group 
would get value 1 and members of the second group 
would get value 0.  
Current paper proposes two relax and fix heuristics for 
the simultaneous lotsizing and sequencing problem in 
permutation flow shops involving sequence-dependent 
setups and capacity constraints. 
The paper has the following structure. Section 2 
introduces a detailed description of the problem and its 
underlying assumptions. Section 3 deals with the 
development and comparison of lower bounds in detail 
and section 4 provides heuristics. Section 5 reports the 
numerical experiments and finally section 6 discusses 
the concluding remarks and recommendations for 
future studies. 
 

22..  PPrroobblleemm  FFoorrmmuullaattiioonn  
2.1. Assumptions 
Several products are produced on serially-arranged 
machines. Order of products in all machines is the 
same. 

- Each machine is constrained in capacity. 
- When the machines are setup, sequence-dependent 

setup costs and times occur. 
- The setting-up of a machine must be completed in a 

period. 
- There must be precisely N (number of products) 

setups in each period on each machine, even if a 
setup is just from a product to itself. Since a setup 
time (and cost) from a product to itself is zero, 
note that the model does not force a machine to 
have exactly N positive-time (and cost) setups but 
rather up to N such setups. The remaining zero-
time (cost) setups are modeling phantoms and do 
not exist in reality ([4] & [5]).  

- External demand exists for final products and is 
satisfied at the end of each period. 

- There are no lead times between the different 
production levels for transportation or cooling the 
products. 

- Shortages are not permitted. 
- A component cannot be produced earlier in a 

period than the production of its required 
component is finished. In other words, production 
on a production level can only be started if a 
sufficient amount of the product from the previous 
production level is available; this is called vertical 
interaction. 

- To guarantee the vertical interaction, idleness 
between each setup and its production is defined 
with the help of shadow product ([10], [13]-[15]). 

- There are no demand and no storage costs for 
shadow products. 

- At the beginning of each period, machines are not 
setup for each of products. 

- The triangle inequality holds, i.e., it is never faster 
to change over from one product to another by 
means of a third product. In other words, a direct 
changeover is at least as capacity efficient as going 
via another product. 
 

2.2. Mathematical Model   
The following notations are used in the model 
formulation:  
Indices: 

k,j,i        Index of product type 
',nn         Designation for a specific setup number 

m             Index of production's level 
t               Index of planning period 
 
Parameters: 
T Planning horizon 
N Number of different products 
M Number of production levels / number of 

machines 
bigM A large real number 
C t,m

 Available capacity of machine m in period t (in 
time units) 

d tj ,
 External demand for product j at the end of 

period t (in units of quantity) 
h mj ,

 Storage costs unit rate for product j in level 
m 

b mj ,
 Capacity of machine m required to produce a 

unit of product (or shadow    product) j in 
time units per quantity units 

p
tmj ,,
 Production costs to produce one unit of 

product j on machine m in period t (in money 
unit per quantity unit) 

S m,j,i  Sequence-dependent setup time at machine 
m when switching from product i to j in time 
units; (for i≠j, ≥0 and for i=j,  
=0) 

S m,j,i S m,j,i

W m,j,i  Sequence-dependent setup cost at machine m 
when switching from product i to j in money 
units; (for i≠j, W ≥0 and for i=j, W  =0. 
We also assume that the relation between 
setup costs and times can be considered as: 

 where  is opportunity 
cost per unit of setup time 

m,j,i m,j,i

S.fW m,j,iwm,j,i = f w

0 The setup configuration on machines at the 
beginning of each period 

 
Decision Variables: 
I tmj ,,

 Inventory level of product j at level m at the 
end of period t 

yn

tji ,,
 1, if the nth setup on machines is performed 

at period t when switching from product i to 
j; 0, otherwise 

xn
t,m,j  Quantity of product j produced after nth 

setup on machine m at period t 
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q n

t,m,j
 Shadow product indicating the gap (in quantity 

units) between nth setup (to product j) on 
machine m at period t and its related production in 
order to ensure that direct predecessor of this 
product (production of product j on machine m-1 
at period t) has been completed. In other words, it 
denotes the idle time (in quantity units) before 
production of product j on machine m in period t 
in order to guarantee vertical interaction. 

According to the above notation, the proposed 
mathematical formulation for the problem can be 
written as follows: 

 

Min . + ∑ ∑ . + .∑∑∑∑∑
= = = = =

N

n

N

j

N

i

M

m

T

t
mjiw

1 1 0 1 1
,,

yn

t,j,i ∑ ∑
= = = =

N

1n

N

1j

M

1m

T

1t
t,m,jp xn

t,m,j ∑ ∑ ∑
= = =

N

1j

M

1m

T

1t
m,jh I t,m,j    

(1) 

Subject to:  
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1 1
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(5) 

j=1,…,N, m=1,…,M-1, t=1,…,T

 
xn

t,m,j  ≤ (C /b ).                             (6) tm, mj , ∑
)1(≠,0 ,,

N

fornjii

n

tji
y

>=

n=1,…,N, j=1,…,N, m=1,…,M, t=1,…,T 

 
qn

t,m,j  ≤ (C /b ).∑                                         (7) tm, mj ,

0 ,,

N

i

n

tji
y

=

n=1,…,N, j=1,…,N, m=1,…,M, t=1,…,T   
 
y
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1

1,,
= 0 ; j≠0 , i=1,…,N                                          (8) 

 

∑
1

1

1,,0

N

i i
y

=

=1                                                                (9) 
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0 ,,

N

j

n

tij
y

=

=∑ ; n=1,…,N-1, i=1,…,N ,t=1,…,T         (10) 
1

1

,,

N

k

n

tki
y

=

+

yn

tji ,,
=0 or 1                                                             (11) 

 
I tmj ,, , ,  ≥0                                              (12) xn

t,m,j qn

t,m,j

 

I mj 0,, =0 ; j=1,…,N, m=1,…,M                              (13) 

 
In this model, equation (1) represents the objective 
function which minimizes the sum of the sequence-
dependent setup costs, the storage costs and the 
production costs. Equation (2) ensures the demand 
supply in each period. Equation (3) shows that in a 
network, total of in-flows to each node is equal to out-
flows from that node.  
Equation (4) guarantees within one period each typical 
product j on machine m is produced before its direct 
successor (product j on machine m+1). 
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Equation (5) represents the capacity constraints of 
machines during periods. 
Equation (6) indicates that setup is considered in 
production process.  
Equation (7) indicates the relationship between shadow 
products and setups. 
Equations (8) and (9) guarantee that for each machine, 
the first setup at the beginning of the planning horizon 
is from a defined product. 
Equation (10) represents the relationship between 
successive setups. 
Equations (11) and (12) represent the type of variables. 
Equation (13) indicates that at the beginning of 
planning horizon there is no on-hand inventory. 
 

3.Development of Lower Bounds 
So far, we have successfully formulated the problem. 
However, the formulation presented in the previous 
section is not a practical approach to solve large 
instances of the problem.  
   In this section we obtain two lower bounds on the 
problem. First lower bound is achieved by solving 
model M1 that is obtained from the initial model by 
relaxing all binary variables. The second lower bound 
is obtained by solving a new model M2 that is derived 
from M1, adding the following equation :  
 

∑
=

N

i
tjiy

0

1

,,
+ =                             (14) ∑ ∑

≠= =

N

jii

N

n

n

tjiy
,1 2

,, a tj ,

 
a tj ,

 is a binary variable. 

Equation (14) is similar to the right hand side of 

equation (6), . In equation (14), we aggregate 

 by summing over all n. 
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Lemma 1. Equation (14) is valid to M1. 
Proof. Suppose that equation (14) is not valid to M1, it 
means that there is at least one couple (j,t), where 
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Suppose that + =1 and  =1, 

( k≠j). For n = n' to N, all j would be changed to the k. 
By this modification, for all couple (j,t),  

+ = 0 or 1. 
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According to the fact that setup costs from a product to 
itself is zero and considering the triangle inequality : 
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Therefore, by assuming that equation (14) is not valid 
to M1, there would be a solution better than or equal to 
the optimum of M1 and it is impossible. 

4. Relax and Fix Heuristics 
One important approach to find feasible solusions for 
larger instances of MIPs is using fix and relax method 
[7]. Dillenberger et al. [8] formulated a lot sequencing 
and sizing model with representation of sequence-
independent setup times on multiple machines. The 
resulting mixed integer programming (MIP) model is 
difficult to solve optimally for industrial problems, and 
so the authors resorted to the fix-and-relax method [7], 
more widely known as relax-and-fix [20]. This 
involves the solution of a series of partially relaxed 
MIPs, each with a number of binary variables that is 
small enough to be quickly and optimally solved by 
conventional branch-and-bound methods. As the series 
progresses, each set of binary variables is permanently 
fixed at their solution values, and the relaxed variables 
are reduced in number, eventually disappearing. The 
procedure is broadly similar to a depth-first 
identification of an initial integer solution for a MIP 
model in a branch-and-bound search. Speed is its major 
advantage. Araujo et al. [2] and Beraldi et al .[3] are 
two recent applications of relax-and-fix method to 
solve MIPs. 
 
4.1. The First Relax and Fix Heuristic (H1) 
In this heuristic, demand of each period is satisfied by 
producing during that period, this is guaranteed using 
equation (15) fo current period. 
 

∑ ∑
= >≠=

N

n

N

nforjii

n

ijty
1 )1(,0

= 1                                           (15) 

 
The formal procedure contains the following steps. 
Step1. The first setup in period 1 is from product 0, fix 
the values of  to be 1 and the values of  to 

be 0 for j=1,…,N and i≠0. 

y j

1

1,,0 y ji

1

1,,

Step2. To identify to which product the second setup is 
in period 1, solve the partial linear programming 
relaxation, other than those fixed in step 1, where the 

values of  are constrained to be 0 or 1. Step3. 

For n=3,…,N, solve the partial linear programming 
relaxation, with the  and  fixed at their 0 or 

1 solution values from steps 1 and 2, with the values of 

 to  fixed at their 0 or 1 solution values 

from the previous applications of step 3, and with the 
values of  constrained to be 0 or 1, while the 

remaining y-variables may vary continuously between 
0 and 1. 

y ji

2

1,,

y ij

1

1,, y ij

2

1,,

y ij

3

1,, yn

ij

1

1,,

−
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Step 4. For t=2,…,T, repeat steps 1 and 3 for  to 

, fixing their values at those of the solutions in 

steps 1 and 3. 

y tji

1

,,

yN

tji ,,
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Note that each cycle of steps 1 and 2 involves solving 
N problems with N2 binary variables each, as N(N-1) of 
y-variables in each problem will newly have value 0 
due to the constraints (9) and (10). Thus, the 
application of the cyclic fix-and-relax approach 
involves the solution of N.T MIPs with N binary 
variables each.  
 
4.2. The Second Relax and Fix Heuristic 2 (H2) 
The only difference between this heuristic and the 
former one is that, H2 permits the demand of a period 
to be satisfied by producing in last periods. In this 
heuristic, for current period, equation (15) is replaced 
by equation (16). 
 

∑ ∑
= >≠=

N

n

N

nforjii

n

ijty
1 )1(,0

=                                          (16) a jt

a jt = 0. or 1. 
 

Thus, the application of the cyclic fix-and-relax 
approach involves the solution of N.T MIPs with 2N 
binary variables each. 

 
5. Numerical Experiments 

In order to ascertain the accuracy of mentioned lower 
bounds, we performed some numerical tests. Tables 1 
and 2 respectively show the results of  such tests in 
some instances of the problem with (N=3 , M=2 , T=3) 
and (N=3 , M=3 , T=3).  

 
Tab. 1. Comparison of lower bounds and exact 

optimal solutions in problem size N=3, M=2 and 
T=3. 

The values inside the brackets are the computational 
time in seconds and the percentage values are the 
difference between the objective values of the lower 
bound against the original model. 

No. Original 
Problem 

First lower 
bound 

Second 
lower 
bound 

 3107.06 2799.56 2990.33 
1  9.90% 3.76% 
 (12.71) (0.06) (0.21) 
 3496.35 2907.08 3341.76 

2  16.86% 4.42% 
 (10.17) (0.08) (0.31) 
 3205.10 2737.97 3056.67 

3  14.58% 4.63% 
 (17.22) (0.13) (0.29) 
 3333.55 2811.88 3231.77 

4  15.65% 3.05% 
 (13.41) (0.09) (0.19) 
 3381.63 2813.06 3158.12 

5  16.81% 6.61% 
 (6.34) (0.06) (0.31) 

Tab. 2. Comparison of lower bounds and exact 
optimal solutions in problem size N=3, M=3 and 

T=3. 
The values inside the brackets are the computational 
time in seconds and the percentage values are the 
difference between the objective values of the lower 
bound against the original model. 

No. Original 
Problem 

First lower 
bound 

Second 
lower 
bound 

 4550.98 3788.75 4373.22 
1  16.75% 3.91% 
 (131.41) (0.11) (0.65) 
 4998.95 4301.39 4770.74 

2  13.95% 4.57% 
 (149.77) (0.19) (0.41) 
 5143.65 4279.41 4993.17 

3  16.80% 2.93% 
 (116.53) (0.16) (0.49) 
 4766.01 4074.29 4610.72 

4  14.51% 3.26% 
 (186.51) (0.22) (0.78) 
 5310.58 4496.89 5007.38 

5  15.32% 5.71% 
 (188.13) (0.23) (0.59) 

 
Comparing the results of second columns of Tables 1 
and 2 shows that computation time grows 
exponentially by increasing the dimension of problem. 
According to Table 1, average computational time for 
problems with (N=3, M=2, T=3) is 11.97s. According 
to Table 2, average computational time for problems 
with (N=3, M=3, T=3) is 154.47s. It means that by 
increasing one level to production levels, average 
computational time increases more than 12 times. 
Tables 1,2 confirm the advantages of the second lower 
bound, therefore it has been used to compare heuristics. 
To evaluate and compare the performance of proposed 
heuristics against the second lower bound, we consider 
twenty different problem sizes in the range of 
(N.M.T)=(3*3*3) to (N.M.T)=(15*15*15). List of the 
problems is shown in Tables 3,4. For each problem 
size, 5 problem instances are randomly generated. 
The exact model, lower bounds and heuristics were 
coded using GAMS IDE (ver 2.0.19.0) and OSL 2. 
GAMS models are run on a personal computer with a 
Pentium 4 processor running at 3.4 GHZ. 
The application of H1 and H2 involves the solution of 
T.N smaller MIPs. In order to evaluate the quality of 
heuristics in equal amount of time, the computational 
time of each MIP is limited to (7200/T.N) seconds for 
heuristics. Tables 3 and 4 compare the objective 
functions and cpu times of heuristics and the second 
lower bound. The required parameters for all numerical 
experiments are extracted from the following uniform 
distributions : 
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b mj ,
≈U(1.5,2), ≈U(0,180), ≈U(0.2,0.4), 

≈U(1.5,2), ≈U(35,70) ,  ≈U(35,70), 

=U(a,b), 

d tj , h m,j

p
tmj ,, W mji ,, S m,j,i

C tm,

 
a=200.N+100.(m-1),   b=200.N+200.(m-1). 
C tm ,

 is calculated in accordance to satisfy demands of 
each period on a just-in-time basis with average setups. 

 
Table 3.Comparison of objective functions of the 

second lower bound and heuristics. 

Problem
 

Size 
(N

.M
.T

) 

N
um

ber of 
problem

 
solved 

T
he second 

low
er bound 

H
1 

H
2 

3*3*3 5 4738.57 5525.07 5327.43 

5*3*3 5 7944.38 9269.75 9003.89 

3*5*3 5 7887.60 9262.72 8850.62 

3*3*5 5 8013.19 9451.46 9234.08 

5*5*5 5 22439.33 26420.63 25506.47 

7*5*5 5 29611.62 36321.87 35268.54 

5*7*5 5 28590.03 35274.49 33655.37 

5*5*7 5 29898.77 36735.31 35963.87 

7*7*7 5 58602.58 72737.52 69180.66 

10*5*5 5 43201.10 52022.13 50415.17 

5*10*5 5 41394.32 51025.74 498899.92 

5*5*10 5 43088.67 53748.46 51652.23 

10*7*7 5 92190.93 113256.65 110596.25 

7*10*7 5 89903.07 109742.38 105462.43 

7*7*10 5 90236.49 110457.34 106149.51 

10*10*10 5 183117.57 230028.75 221181.84 

15*10*10 5 289006.90 362070.12 --- 

10*15*10 5 283046.25 357616.67 350070.96 

10*10*15 5 272018.56 354437.45 --- 

15*15*15 5 674419.93 832505.18 --- 

* It means that feasible solution has not been found 
after 7200 seconds of computing time. 

Tab. 4. Comparison of cpu times of the second 
lower bound and heuristics.  

The values inside the brackets are the computational 
time in seconds. * means that finding the optimum 
value for the second lower bound requires more than 
7200 seconds and the objective function at this time 
has been considered.--- means that feasible solution has 
not been found after 7200 seconds of computing time. 

Problem
 

Size 
(N

.M
.T

) 

N
um

ber of 
problem

 solved 

T
he second 

low
er bound 

H
1 

H
2 

3*3*3 5 (0.49) (0.13) (0.70) 

5*3*3 5 (11.61) (0.44) (2.98) 

3*5*3 5 (2.80) (0.16) (1.42) 

3*3*5 5 (4.23) (0.23) (0.91) 

5*5*5 5 (58.37) (2.19) (24.51) 

7*5*5 5 (149.95) (15.74) (208.22) 

5*7*5 5 (98.53) (5.21) (58.31) 

5*5*7 5 (109.21) (5.28) (38.81) 

7*7*7 5 (288.38) (77.61) (1437.27) 

10*5*5 5 (912.25) (132.55) (2095.89) 

5*10*5 5 (150.06) (11.43) (127.51) 

5*5*10 5 (211.61) (8.52) (96.31) 

10*7*7 5 (1837.74) (298.96) (3807.97) 

7*10*7 5 (611.34) (58.72) (1411.13) 

7*7*10 5 (958.13) (79.60) (1983.31) 

10*10*10 5 (4306.88) (823.33) (5711.96) 

15*10*10 5 >7200* (1831.27) --- 

10*15*10 5 >7200* (1138.51) (6854.35) 

10*10*15 5 >7200* (1383.41) --- 

15*15*15 5 >7200* (3231.59) --- 

 
6. Concluding Remarks 

The contribution of the paper has been to derive and 
test one exact formulation and two relax and fix 
heuristics for simultaneous lotsizing and sequencing in 
permutation flow shops with sequence – dependent 
setups. 
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To test the accuracy of proposed heuristics, two lower 
bounds are developed and compared against the 
optimal solution. Selected lower bound is used to test 
the accuracy of proposed heuristics. 
Because of the expanding role of meta-heuristic 
approaches to solve complicated lotsizing problem ([6] 
& [11]), the application of meta-heuristic approaches to 
face this complex problem is recommended as an  area 
for future research. 
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