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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

Periodic vehicle routing problem focuses on establishing a plan of 

visits to clients over a given time horizon so as to satisfy some service 

level while optimizing the routes used in each time period. This paper 

presents a new effective heuristic algorithm based on data mining 

tools for periodic vehicle routing problem (PVRP). The related results 

of proposed algorithm are compared with the results obtained by best 

Heuristics and meta-heuristics algorithms in the literature.  

Computational results indicate that the algorithm performs well in 

terms of accuracy and solution time. 
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11..  IInnttrroodduuccttiioonn


  

The classical vehicle routing problem (VRP) is 

defined as follows: vehicles with a fixed capacity C 

must deliver order quantities di (i=1,..N) of goods to N 

customers from a single depot (i=0). Knowing the 

distance dij between customers i and j (i,j=1,..,N), the 

objective of the problem is to minimize the total 

distance traveled by the vehicles in such a way that 

only one vehicle handles the deliveries for a given 

customer and the total quantity of goods that a single 

vehicle delivers do not be larger than C (Drummond et 

al., 2001). The typical planning period in a classical 

VRP is a single day.  

The period vehicle routing problem (PVRP) 

generalizes the classical VRP by extending the 

planning period to D days. The classical PVRP consists 

of a homogeneous vehicle fleet (vehicles with same 

capacities) which must visit a group of customers from 

a depot where the vehicles must start and return to at 

the end of their journeys. Each vehicle has a fixed 

capacity that cannot be exceeded and each customer 

has a known daily demand that must be completely 
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satisfied in only one visit by exactly one vehicle. The 

planning period is D days. Each customer in PVRP 

must be visited iS (i=1,..N) times, where1 iS D  . In 

the classical model of PVRP, the daily demand of a 

customer is always fixed. The PVRP can be seen as a 

problem of generating a group of routes for each day so 

that the constraints involved are satisfied and the global 

costs are minimized.  

In PVRP problem, Each customer i{1,2,..,N} 

specifies a set Si of combinations, and the visit days are 

assigned to the customer by selecting one of these 

combinations. The vehicles must, thus, visit the 

customer i on the days belonging to the selected 

combination. For example, in a 6-day planning period, 

if the customer i specifies the two visit day 

combinations {1, 3, 5} and {2, 4, 6}, then the vehicles 

must visit the customer i on the days 1, 3 and 5 if the 

combination {1, 3, 5} is selected while selecting 

combination two means the vehicles must visit the 

customer i on the days 2, 4 and 6 (Alegre. et al. 2007).  

In this paper, an effective heuristic algorithm has been 

developed based on data mining tools, for the PVRP. 

The algorithm has a significant ability in solving 

PVRPs in short amount of time compared with existing 

algorithms in the literature. This paper is organized as 

follows: second part is dedicated to a review of the 

literature in third section, the mathematical model of 

Periodic vehicle routing problem; 

Heuristic algorithms;  

Data mining 
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proposed problem is described. In section 4
th

 and 

before explaining the heuristic algorithm, tools and 

algorithms used as important parts of the proposed 

algorithm are presented. Next, in the 5
th

 section 

proposed heuristic algorithm (AD) is described. The 

results obtained from solving 13 test problems taken 

from literature and the result analysis are discussed in 

section 6 and section 7 discusses the conclusions. 

 
2. Literature Review 

Early formulations of the PVRP were developed by 

Beltrami and Bodin (1974) and by Russell and Igo 

(1979) who proposed heuristics applied to waste 

collection problems. Christofides and Beasley (1984) 

first formulated the problem mathematically and then 

presented a heuristic that assigns a priority level to 

each customer and, according to this priority, assigns a 

visiting schedule to each customer so that the increase 

of an estimation of the costs of the vehicle routing 

problems (VRPs) related to the schedules is minimized. 

Tan and Beasley (1984) use the idea of the generalized 

assignment method proposed by Fisher and Jaikumar 

(1981) and assign a visiting schedule to each vertex. 

Eventually a heuristic for the VRP is applied to each 

day.  

Russell and Gribbin (1991) developed a heuristic 

organized in four phases. Solution methods in these 

papers have focused on two-stage (construction and 

improvement) heuristics. A heuristic for a variant of 

the PVRP, where the objective is to minimize the 

number of vehicles, is proposed by Gaudioso and 

Paletta (1992). Similarly, good results were obtained in 

the more recent work of Drummond et al. (2001), who 

implemented parallel genetic algorithms.  

 Alegre. et al. (2007) applied scatter search for solving 

the periodic vehicle routing problem. Authors used 

from scatter search only for optimizing the 

combination of customers. They applied two local 

search algorithms, OR interchange and CROSS, for 

dailies tours. Angelelli and Speranza (2002) suggest a 

tabu search algorithm for solving one special kind of 

problem. Their problem is near to multi depot periodic 

vehicle routing problem. Francis et. al. (2007) 

suggested two indexes, operational flexibility and 

complexity, for evaluating the solutions and the trade-

off between them. 

Hemmelmayr et al. (2009) present variable 

neighborhood search heuristic to solve problem. They 

used their algorithm for PTSP. The first contribution of 

their study was using VNS for PVRP and the second 

one was the best results they obtained in some test 

problems. 

In this paper, a new heuristic algorithm has been 

developed based on clustering, applied to the PVRP. 

The algorithm has a significant ability in solving 

PVRPs and its noticeable point is that it can reach to 

the answer in quite small amount of time. 

The strategy that used in this paper can be categorized 

as cluster-first route-second strategy. Some researchers 

applied this method (Fisher & Jaikumar, 1981; Gillett 

& Johnson, 1976.) In this strategy and  in the first step, 

customers are clustered  in to clusters and in the second 

step a constructing  method  is applied  for determining  

the visit’s order of  tour’s customers on each cluster 

considering  the minimum  cost for  each  rout. There 

are three types of cluster-first, route-second methods. 

The first category involve The simplest methods, like 

sweep algorithm (Gillett and Miller [20]) and  Fisher 

and Jaikumar algorithm (17) . The algorithms in this 

category generally perform a simple clustering of the 

customers and use from the results to determine vehicle 

routes. 

The second ones are based on Truncated Branch-and-

Bound (Christofides, Mingozzi, and Toth [10]) and in 

third category , named petal algorithm (Balinski and 

Quandt [3], Foster and Ryan [18]) in the first step 

produces a number of overlapping clusters  and selects 

from them a suitable  set of routes. 

A very recent paper in PVRP is paper of Pacheco et al. 

(2011) in which the authors study the problem of a 

bakery company in northern Spain. The objective of 

problem is minimizing total distance traveled for the 

daily routes over the week. The subject that 

distinguished the proposed problem with classical 

PVRP is existence of some flexibility in the dates of 

delivery. A new mixed-integer linear model are 

presented and solve the problem through a two phase 

algorithm. In the first phase of algorithm, a set of good 

and diverse solutions is generated, applying GRASP. 

In the second phase, path-relinking is applied for 

improving the solutions. Computational experiments 

are executed on real-data-based instances. Also the 

authors applied the necessary modifications to treat the 

problem as a PVRP, and then a complete compression 

is considered with algorithms in the literature.  

Recently, Vidal et al ,(2012) propose a new hybrid 

genetic algorithm in which individuals representing 

solutions and infeasible solutions are allowed in the 

first stages of algorithm. Different operators with the 

target of having good quality solutions are applied in 

each iteration and diversity of solutions in all iterations 

maintained respecting to specified value. They test the 

algorithm on benchmark instances for the PVRP and 

the MDVRP and set of instances for the multi-depot 

periodic vehicle routing problem (MDPVRP), the 

results shows good result. A complete and recent 

survey on the PVRP and its extensions was written by 

Francis et al(2008). 

 

3. Model Formulation 
Let G= (V,A) be a graph, where V={v1,v1,...,vN} is 

the nodes set, and A={(vi,vj):  vi,vj V} is the arcs set 

where each arc ( , )i jv v  is associated with a non-

negative cost Cij. Followings are a number of 

parameters used in the presented mathematical model. 
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3.1. Parameters 
N  Number of nodes (i.e., customers) 

D  The days set in the period 

Si  the total number of combinations of node i  

id   Demands of node i in each day of 

combination (i=1,…,N)  

nv  Total number of vehicles 

C Capacity of each vehicle. 

it  Required time for servicing the customer 

(node) i  

ijt   Required time for traveling between 

customers i and j  

B Arbitrary large number. 

Cij Travel cost (i.e., length of the arc) between 

customers i and j 

L Maximum time that each vehicle can be used 

in each day. 

 | 1, ,S i i N   Collection of nodes 

 
3-2. Decision Variables 

The decision variables are as follows: 

 

 

 

 

 

 
3-3. Mathematical Model 

Now, the problem can be mathematically formulated as 

follows. 
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In this formulation, the objective function (Z1) 

minimizes the transportation cost. Constraint (2) 

ensures that among  combinations for each customer 

only one combination is selected. Constraint (3) is 

related to select a day for serving to customer and 

constraint (4) states that the arc i-j in day of   could be 

used if this day be in combination selected day of node 

i,j. Constraint (5) states if a vehicle arrives at a node 

(i.e., customer's location), it should leave it and 

constraint (6) ensures that depot is first location and 

final destination of each vehicle. Constraint (7) states 

maximum capacity that a vehicle can carry. Constraint 

(8) is related to maximum travel time and constraint (9) 

prevents from constructing a loop in each day. 

 

4. The AD Heuristic Algorithm 
In this section and before explaining the heuristic 

algorithm, K-means clustering and Clarke and Wright 

algorithm are explained and the VRPSOLVER 

software is analyzed.  These methods are used in some 

  ,  , , 0,1   , 1,2,..., , 1,2,..., , 1,2,.., , 1,2,..,Ss
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0 Otherwise. 
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1 If  s - th combination of  node i is selected to serve

0 Otherwise. 

s

iz

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

1 If   the vehicle serves node  in day δ

0 Otherwise. 
i

i
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1 If day of  is in s-th  combination of node 

0 Otherwise. 
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parts of the proposed heuristic algorithm, and then the 

heuristic algorithm is explained.   

K-means is one of the simplest unsupervised learning 

algorithms that solve the well known clustering 

problem.( Han and & Kamber, 2001) The procedure 

follows a simple and easy way to classify a given data 

set through a certain number of clusters (assume k 

clusters) fixed a priori. The main idea is to define k 

cores, one for each cluster.  

These cores should be placed in a cunning way since 

different location causes different result. So, the better 

choice is to place them as much far from each other as 

possible. The next step is to take each point belonging 

to a given data set and associate it to the nearest core. 

When no point is pending, the first step is completed 

and an early grouping is made. At this point we need to 

re-calculate k new cores as new centers of the clusters 

resulting from the previous step. After we have these k 

new cores, a new binding has to be done between the 

same data set points and the nearest new core. A loop 

has been generated.  

As a result of this loop we may notice that the k cores 

change their location step by step until no more 

changes are done. In other words cores do not move 

any more. Figure 1 presents a simple view of how the 

algorithm makes clusters. 

 

 
Fig. 1. an example of cluster customers to four parts. 

 
The k-means algorithm takes the input parameter, k, 

and partitions a set of n objects into k clusters so that 

the resulting intra cluster similarity is high but the inter 

cluster similarity is low. 

The most famous heuristic to solving the VRP problem 

was proposed by Clarke and Wright (1964) and is 

based on the concept of saving, an estimate of the cost 

reduction obtained by serving two customers 

sequentially in the same route, rather than in two 

separate ones. If i is the last customer of a route and j is 

the first customer of another route, the associated 

saving is defined as sij = ci0 + c0j − cij. If sij is 

positive, then serving i and j consecutively in a route is 

profitable. The Clarke and Wright algorithm considers 

all customer pairs and sorts the savings in non-

increasing order. Starting with a solution in which each 

customer appears separately in a route, the customer 

pair list is examined and two routes are merged 

whenever this is feasible. A lot of works have been 

arisen on literature to improve  the classical version of 

the algorithm and  a parallel and a sequential version 

are available. Gaskell (1967) and Yellow (1970) 

proposed modified version of algorithm and add extra 

parameter for calculating the saving formula of the 

algorithm. This parameter was  called  route shape 

parameter ().Golden, et al. (1977) report that the best 

setting of this parameter to get good results is   = 0.4 

or 1.0.  Also Various effort have been done by a 

number of authors to speed up computation time (See 

Nelson et al. (1985) & Paessens(1988)). VRPSOLVER 

is developed by Snyder in Lehigh University. The 

software applies adaptation of the Clarke-Wright 

savings algorithm to solve VRP instances. Thorough 

information and the free version are available at 

http://www.lehigh.Edu/~lvs2/ download/ vrpsolver 

html. In the final phase of our algorithm, the software 

is employed to solve daily VRPs. Unfortunately there 

were no data on estimated error of the software; 

therefore, we solved the CVRP (Capacitated Vehicle 

Routing Problem) instances from Augerat, et al.  

available at http://www.branchandcut.org/VRP/data 

with the initial adjustments of the software. Table 1 

shows the related solutions.  

According to the result, the software has nearly %2 

error. This error is calculated by 

 [ ANSWER BEST 100] / BEST  . In this formulation 

the ANSWER is the best answer obtained from the 

software, and the BEST is the best answer found in the 

literature. 
 

http://www.lehigh.edu/~lvs2/%20download/%20vrpsolver%20html
http://www.lehigh.edu/~lvs2/%20download/%20vrpsolver%20html
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/#A#A
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Tab. 1. The results of vrpsolver, solving the Augerat, et al. test problems.

Vrp-Solver 
Opt.Sol Tigh. #Veh. #Cu. Instance 

ER BEST 

0.03 809.33 784.00 0.82 5 31 A-n32-k5.vrp  

0.01 666.00 661.00 0.89 5 32 A-n33-k5.vrp  

0.00* 742.00 742.00 0.9 6 32 A-n33-k6.vrp  

0.02 790.37 778.00 0.92 5 33 A-n34-k5.vrp  

0.01 806.00 799.00 0.88 5 35 A-n36-k5.vrp  

0.04 693.65 669.00 0.81 5 36 A-n37-k5.vrp  

0.01 962.00 949.00 0.95 6 36 A-n37-k6.vrp  

0.02 747.59 730.00 0.96 5 37 A-n38-k5.vrp  

0.03 848.00 822.00 0.95 5 38 A-n39-k5.vrp  

0.01 839.73 831.00 0.88 6 38 A-n39-k6.vrp  

0.01 943.48 937.00 0.95 6 43 A-n44-k6.vrp  

0.02 960.53 944.00 0.99 6 44 A-n45-k6.vrp  

0.01 1158.77 1146.00 0.91 7 44 A-n45-k7.vrp  

0.01 926.45 914.00 0.86 7 45 A-n46-k7.vrp  

0.03 1100.78 1073.00 0.89 7 47 A-n48-k7.vrp  

0.04 1047.32 1010.00 0.95 7 52 A-n53-k7.vrp  

0.02 1186.05 1167.00 0.96 7 53 A-n54-k7.vrp  

0.01 1082.54 1073.00 0.93 9 54 A-n55-k9.vrp  

0.01 1369.92 1354.00 0.92 9 59 A-n60-k9.vrp  

0.01 1048.96 1034.00 0.98 9 60 A-n61-k9.vrp  

0.03 1328.09 1288.00 0.92 8 61 A-n62-k8.vrp  

0.02 1644.57 1616.00 0.97 9 62 A-n63-k9.vrp  

0.01 1331.26 1314.00 0.93 10 62 A-n63-k10.vrp  

0.02 1428.96 1401.00 0.94 9 63 A-n64-k9.vrp  

0.03 1209.54 1174.00 0.97 9 64 A-n65-k9.vrp  

0.02 1179.90 1159.00 0.94 9 68 A-n69-k9.vrp  

0.02 1804.70 1763.00 0.94 10 79 A-n80-k10.vrp  

0.02      average 
*
. The algorithm reached to the optimal solution 

 
5. AD Heuristic Algorithm Structure 

This algorithm is trying to simultaneously 

construct m v  tours in which m  and v  are 

respectively representing the number of days and the 

number of vehicles. To form the tours, the algorithm 

puts the adjacent customers in the same tour. In the 

first step the coordination of depot changed to the zero 

point of coordination system by subtracting the 

coordination of depot from nodes coordination. In the 

next step the coordination of the customers is changed 

from Cartesian to polar in which the value of radian is 

the base of distance. In the next step which let the 

procedure catch to final cores faster, an initial core is 

assigned to each tour, without considering the capacity 

limitation, using an assign procedure.  

The algorithm then improves the initial cores by 

applying k-means clustering algorithm, again without 

considering capacity limitation. After attaining the 

improved cores, the capacity limitation is taken into 

consideration and the algorithm adjusts the cores by 

assigning the customer to the tours. The main 

procedure of the proposed algorithm is shown in Figure 

2 as follow: 
In practice, we face and solve two problems; first, there 

is the possibility of facing infeasible solutions which 

will be amended by applying feasibility procedure. 

Second, by adding the customers to the tours after 

capacity limitation the cores do not tend to a constant 

value rather they oscillate between some points. As an 

explanation, suppose that nodes A and B are assigned 

to a tour i, but after applying capacity limitation the 

node B cannot be in the tour anymore. At the end of 

assigning nodes, the core will be updated and because 

of the change in its coordination, in the next assigning 

procedure node A may no longer stay in the tour while 

node B may enter it.  

The next update may change core’s coordination again 

and this loop will continue. For illustrate Unstable 

cores in capacitated clustering figure 3 is shown in 

below: 

 

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/#A#A
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n32-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n32-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n33-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n33-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n33-k6.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n33-k6.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n34-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n34-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n36-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n36-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n37-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n37-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n37-k6.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n37-k6.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n38-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n38-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n39-k5.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n39-k5.vrp
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http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n45-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n45-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n46-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n46-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n48-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n48-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n53-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n53-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n54-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n54-k7.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n55-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n55-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n60-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n60-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n61-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n61-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n62-k8.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n62-k8.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n63-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n63-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n63-k10.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n63-k10.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n64-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n64-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n65-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n65-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n69-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n69-k9.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n80-k10.vrp
http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/A/A-n80-k10.vrp
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Fig. 2. The main procedure of the AD algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Unstable cores in capacitated clustering. 

 

 

 

 

  

Modifying coordinate points of Customers 

2. Change the coordination of the customers from 

Cartesian to polar set. 

1. Change the coordination of depot to the zero point. 

 
 

Finding the best cores without considering the 

capacity limitation 

1. Assign an initial core to each tour. 

2. Improve the initial cores by applying k-means 

clustering algorithm. 

 Finding the best tours 

2. Solve each day cluster by the adaptation of the Clarke-Wright saving algorithm. 

1. Find the best cores, considering the capacity limitation. 

 

      . Third cluster core   
 

       . Other cluster cores 

 

A 

3. Updating clusters cores with new 

assigned nodes cause the coordination of 

third cluster change.     

B 
 

2. By applying capacity constraint node B 

isn’t assigned to third cluster, assuming the 

node A has the upper priory to assign. 

 

4. In the reassigning customers, node A 
is assigned to anther cluster and 

algorithm can assign node B to third 

cluster according to capacity constraint. 

B 

A 

 

5. New updating clusters cores cause 
that the coordination of clusters cores 

change.      

 

B 

A 

 

6. Changing the coordination of third 

cluster cause the node A is assigned to 
it and node B isn’t assigned to third 

cluster because of capacity constraint. 

A 

B 

 

 

1. In the first, node A and B are assigned to 

the third cluster without capacity constraint. 

A 

B B 

A 
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In order to catch the best cores and tours the Davies-

Bouldin criterion is being calculated and the cluster 

with the least Davies-Bouldin criterion is chosen. In 

the last step, the collection of each day’s tours are 

considered as a VRP and solved by the adaptation of 

the Clarke-Wright savings algorithm. 

Before exploring the algorithm, the two definitions and 

procedures used in the algorithm are explained. 

 
5-1. Tour Core: 

The tour core is determined by the average of radian 

value of customer’s polar coordination. The initial 

value of the core is considered to be zero. 

 
5-2. Davies-Bouldin Index: 

The Davies-Bouldin  criterion (Davies and Bouldin, 

1979)  is a measure for cluster desirability. This 

criterion is calculated by the equation 1. 

 In the equation 1, with defining the density of a cluster 

as the average of absolute node distances from the 

cluster’s core,   k, xi  and  ci are defined as follow: 

k:  the number of clusters. 

  xi : the density of the cluster i.  

 ci : the core of cluster i. 

),( ji ccD : distance between clusters cores. 
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Davies-Bouldin criterion is initiated on this concept 

that in clustering whatever the density of each cluster is 

smaller and distance of cluster’s cores is greater the 

cluster is better. 

 

5-3. Assign Procedure: 

This procedure assigns the customers to a tour without 

considering capacity limitation in following steps: 

1. Calculate the cost of all combinations of a customer. 

This cost is the sum of combination’s daily costs which 

is the minimum distance (according to their radian 

value) between tour cores of the day and the customer. 

Figure 3 illustrates the procedure of finding the cost of 

allocating customer to its combinations. 

2. For each customer, Choose the combination with the 

least cost and assign it to the tour with the least 

distance in related day.  

3. Update the tour cores which new customer has been 

assigned to. Use the average value of assigned 

customer’s radian value for each tour. 

 

Cost of  combinations Choosing best vehicle in each day Vehicle 2 Vehicle 1 

   

 

 

  Combination one 

     Sum{ Daycost1, 

Daycost2} 

 

 

 

    Combination two 

    Sum{ Daycost2, Daycost3} 

 

Daycost1=Min{ c11,c12} 

  
Day 1 
 

Daycost2=Min{ c21,c22} 

  
Day 2 
 

Min{ c31,c32}=Daycost3 

  

Day 3 

Fig. 4. The procedure of finding the cost of allocating a customer for example with two vehicles and three days 

and two combinations ([1, 2] and [2, 3]). 

 
5-4. Feasibility Procedure 

The Feasibility procedure is applied when there is no 

feasible combination for a customer. In order to solve 

this problem these steps are taken. 

1.Consider all combinations of a given customer and 

define the infeasible days of them.  

2. Sort combinations of a given customer non_ 

decreasingly according to number of infeasible days.  

3. Select sorted combinations from the top, in each 

infeasible day of selected combination, sort the tours 

non-increasingly according to their remained capacity. 

4. Start from the first tour. Now, check whether it is 

possible to remove one (some) customer(s) from the 

tour and assign it(them) to another tour to use the 

released capacity for accommodating the infeasible 

customer? In selecting the other tour, it is preferred that 

the removed customer(s) be serviced in the same 

combination. If this change is possible for at least one 

tour of each infeasible day of selected combination, do 

the movements and exit the procedure otherwise check 

the next combination. 

5. Announce the problem infeasible if there is no left 

combination. 

 
C11 

 
C12 

 
C21 

 
C32 

 

 
C31 

 

 
C22 
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5-5. Algorithm Steps 

In this subsection the algorithm is described in details.  

1. First Step: 

 Change the coordination of depot to the zero point 

of coordination system by subtracting its 

coordination from all the nodes. 

  Change the coordination of the nodes from 

Cartesian to polar using the two equations 2 and 3. 

in these equations x and y are the coordinates of the 

node: 

)( 22 yxR   (12) 

)arctan(
x

y
  (13) 

 

It is obvious that Radian coordinate of the nodes can 

vary from 0 to   and from -  to 0. 

2. Second Step: 

In this phase the initial cores are considered for the 

tours and then are improved by the k-means clustering 

algorithm. The generated cores in this phase are used to 

build feasible tours regarding to capacity limitation. 

 Core formation 

1. Sort the nodes in a non-decreasing order according 

to their radian value. 

2. Let the initial value of the cores be equal to zero. 

3. Pick one of the possible combinations of the first 

customer with minimum number of days and assign 

it to a random tour in a random day combination. 

4. Update the core of the tours which nodes have 

been assigned to by using average value of 

customer’s radian value with the zero angle of 

central depot. 

5. Apply the assigning procedure to the all other 

customers. 

 Core improvement using k-means clustering 

algorithm 

1. Remove all the customers from tours. 

2. Appoint the created core as the initial core. 

3. Sort the customers non-decreasingly according to 

their radian part. 

4. Assign the customers to the tours using assignment 

algorithm. 

5. Compare the new core with the initial one. If the 

difference between sum of the new cores and the 

initial ones is less than  =0.01, go to next step, 

otherwise make new cores the initials and repeat the 

subroutines of core improvement. 

3.Third Step 

Up to now, the best tours have been created but the 

capacity limitation has not been satisfied. In this phase 

the customers are clustered according to the improved 

cores gained from the later phase. The problem in this 

part, as mentioned before, is that the cores do not tend 

to a constant value which is solved by applying 

Davies-Bouldin criterion. 

Tour creation considering capacity limitation 

1. Sort the customers non-increasingly according to 

their demand. 

2. Pick the customers from the top and assign them 

using assign procedure and considering feasible 

combinations. A feasible combination is a 

combination in which the customer can be serviced 

in all days of combination. In other words, the 

capacities in all days of the combination allow the 

customer to be serviced. 

3. Apply feasibility procedure if no feasible 

combination is found for a customer. 

4. Save the created core and calculate the Davies-

Bouldin criterion of created tours. 

Appoint the core from former step to the initial core 

and repeat the sub routines 10 times. Let’s mention 

,testing on three test problems, results shown that 

increasing the number of repetition from 10 times does 

not affect on finding better cores, so this parameter is 

set to 10.  

5. Select the tours with the least value of Davies-

Bouldin criterion from all created tours. 

4. Fourth Step 

The aim of this phase is to finalize the tours of the last 

step. Adaptation of the Clarke-Wright savings 

algorithm is applied to assign the customer of each day 

to its tours. 

The Clarke and Wright savings algorithm terminates 

when no two routes can feasibly be merged, i.e., no 

two routes can be merged without violating the route 

capacity constraints. Consequently, the number of 

routes may exceed the number of available vehicles. In 

that case, a route with the fewest customers is 

identified and the customers in this route are moved to 

other routes of day (minimizing the increase in 

costs).Figure 5 shows one day tours obtaining from 

solving a problem with the algorithm. 

 

  
a.First day tours b. Second day tours 

Fig. 5. Tours obtained from solving a 4
th

 sample test with the algorithm. 
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6. Computational Results 
The aim of this section is to compare the proposed 

algorithm result with the ones from literature. The 

computer code was written using Matlab 7 on Intel 

dual core, 2.33 GHz processor and 2 GB of RAM-

memory. For comparing the algorithm with other 

algorithms in literature the 13 instances are chosen. 

The first 10 instances were introduced by Eilon et al. 

(1971) and adapted to the PVRP by Christofides and 

Beasley (1984), the 11th instance was proposed by 

Russell and Igo (1979) and finaly, the 12th and 13th by 

Russell and Gribbin (1991). 

 
6-1. Compression with Heuristic Algorithms 

Since the proposed algorithm is categorized as  

heuristic algorithms catagory, In the first, the proposed 

algorithm’s results are compared with those obtained 

by the heuristic algorithms in the literature. These 

heuristic algorithms are Tan and Beasley (1984) (TB), 

Christofides and Beasley (1984) (CB), Russell and 

Gribbin (1991) (RG). The results shown in the table 2. 

 

Tab. 2. Results of proposed algorithm compared to 

Heuristic algorithms 

instances TB CB RG AGBD ER 

1 –** 547 537.3 540.98 0.007 

2 1481 1443 1355.4 1368.5 0.010 

3 – 547 - 569.94 0.042 

4 – 844 867.8 864.02 0.024 

5 2193 2187 2141.3 2207.84 0.031 

6 – 938 - 903.5 0.00* 

7 – 839 833.6 863.52 0.036 

8 2282 2151 2108.3 2241.35 0.063 

9 – 875 - 873.29 0.00* 

10 1834 1674 1636.5 1705.04 0.042 

11 878.5 847 820.3 820.06 0.00 

12 – – 1312 1345.04 0.025 

13 – – 3638.1 3684.08 0.013 

 
Average gape 

 
0.019 

*
. The algorithm reached to the optimal solution. 

**. 
The algorithm could not find a feasible solution for 

the instance.
 

 

In this table, the first column is related to the number 

of instances and columns two to four are related to the 

answers obtained from heuristics algorithms in the 

literature.  

Furthermore 5
th

 column is related to the answers of the 

proposed algorithm. The 6
th

 column shows the 

percentage error of the proposed algorithm. 

Unfortunately, we couldn’t find any information about 

CPU time of heuristic algorithms in the literature, so 

only the answer’s quality is considered for comparison. 

Percentage error of the algorithm is calculated with 

( ) /GABD HEU HEUBEST BEST BEST . In this 

formulation, the 
GABDBEST  is the best answer 

obtained from proposed algorithm and 
HEUBEST  is 

the best answer obtained from heuristic algorithms in 

the literature.  

As it has shown in the table 2, the proposed algorithm 

reached to the best solution for 6
th

 and 9
th

 instances; 

also the average gap is about 1.9% that is shows, the 

very good quality of answers of the proposed 

algorithm. 

 

6-2. Compression with Meta Heuristic Algorithms 

For more detailed analysis of performance of the 

proposed algorithm, two most recently developed meta 

heuristics algorithms- Alegre et al. (2007)(ALP) and 

Hemmelmayr et al.(2009) - are considered. Since the 

desired algorithms have been implemented on different 

computers, direct compare of solving times is difficult. 

To prevent from this problem the information gathered 

by the benchmark of Dongarra (2009) is used.  

The related information of this benchmark is available 

at http://www.netlib.org/benchmark/performance.ps. 

This paper deals with comparing computer speeds and 

applies flop/s (floating point instructions per second) 

criterion for this purpose.  

Since there were no computers with characteristics of 

the ones in ALP, VNS and AD, in the first step the 

information of the most similar computers was used for 

ALP and AD. The computer characteristics are 

presented in table 4. 

 
Tab. 4. Specification of computers performance that used for comparing the algorithms abilities 

Algorithms Real specification Nearest  specification Mflop/s 

ALP algorithm Pentium III, 600 MHz Pentium III 800 MHZ 2216 

AD algorithm 
Intel dual core , 2.33 GHz 

processor 

Intel Core 2 Q6600 Kensfield 

(2 core, 2.4 GHz) 
9669 

 
Considering flop/s criterion, our algorithm times are 

multiplied by 4.36 to be comparable with time of ALP 

algorithm. For comparing the computational time of 

VNS the reported computational times in Hemmelmayr 

et al.(2009)  are used. These computational times are 

comparable with ALP computational times and thus 

are comparable with modified Computational times of 

AD algorithm. The result is shown in table 5. In this 

table, the columns second to 5th are related to the ALP 

algorithm, and respectively are the best answers, 

http://www.netlib.org/benchmark/performance.ps
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computational time, percentage of quality error and 

percentage of computational error, also other columns 

are related to the VNS algorithm and AD algorithm, in 

addition AD algorithm has two columns for 

computational time-columns 11th and 12th- first one is 

the detected computational time of the algorithm and 

second is corrected run time of the algorithm according 

to the  flop/s criterion. 
 

Tab. 5. Results of AD algorithm compared to meta-heuristic algorithms considered from literature 

 
ALP 

 
VNS-107 

 
AGBD 

# Best.Obj CPU.T ER.O ER.T 
 

Best.Obj CPU.T ER.O ER.T 
 

Best.Obj CPU.T R.CPU.T ER.O ER.T 

1 531.02 268 0.01 20.65 
 

524.61 98.3 0.00 33.61 
 

540.98 2.84 12.38 0.03 0.00 

2 1324.74 494 0.00 20.02 
 

1332.01 81.6 0.01 14.14 
 

1368.5 5.39 23.5 0.03 0.00 

3 537.37 45 0.02 40.28 
 

528.97 100.5 0.00 401.00 
 

569.94 0.25 1.09 0.08 0.00 

4 845.97 1426 0.00 90.88 
 

847.48 67.2 0.00 17.88 
 

864.02 3.56 15.52 0.02 0.00 

5 2043.75 1280 0.00 62.81 
 

2059.74 68 0.01 13.78 
 

2167.8 4.6 20.06 0.06 0.00 

6 840.1 1797 0.00 64.11 
 

884.69 76 0.05 11.01 
 

903.5 6.33 27.6 0.08 0.00 

7 829.65 199 0.00 6.56 
 

829.92 183.2 0.00 29.33 
 

863.52 6.04 26.33 0.04 0.00 

8 2052.21 3584 0.00 130.52 
 

2058.36 142.9 0.00 21.86 
 

2141.35 6.25 27.25 0.04 0.00 

9 829.65 970 0.00 27.74 
 

834.92 193.1 0.01 23.95 
 

873.29 7.74 33.75 0.05 0.00 

10 1621.21 9467 0.00 296.89 
 

1629.76 170 0.01 22.32 
 

1705 7.29 31.78 0.05 0.00 

11 782.17 6492 0.00 124.45 
 

791.18 253.7 0.01 20.37 
 

825.06 11.87 51.75 0.05 0.00 

12 1230.95 515 0.00 11.91 
 

1258.46 354.7 0.02 37.78 
 

1312 9.147 39.88 0.07 0.00 

13 _ 1491.6 _ 20.65 
 

3835.9 97.2 0.04 5.15 
 

3684.08 15.8 68.89 0.00* 0.00 

Average 0.002 70.575 
   

0.012 50.168 
    

0.047 0.000 

 
In this table, the percentage of quality error calculated 

using (h-z*)/z* , that h and z* are the answer of the 

selected algorithm and best answer from other 

algorithms respectively, Also the percentage of 

computational  error calculated using ((CPU(t)-

BestCPU(t))/ BestCPU(t), In this equation the CPU(t) 

and BESTCPU(t) respectively are solving time of the 

selected algorithm and the best solving time from other 

algorithms.  

As it is shown in table 5, the proposed algorithm 

reached to the best solution for 13th instance in 

addition the average percentage of quality error  is 

about 4.7% ,that is the very good result for a heuristic 

algorithm compared with meta heuristic algorithms. 

The average computational run time of algorithms 

7057.5%, 5016.8% and  0% for ALP, VNS and 

proposed algorithm respectively. As it is clear 

computational times of the proposed algorithm  are the 

best for all instances, and our algorithm is supreme in 

computational time. The average CPU time for ALP 

VNS and AD algorithm are 2156.46,145.108, and 

29.214 respectively.  evidences show that proposed 

algorithm obtained to the answers with good quality in 

short period of time. 

 
7. Conclusions 

The aim with this paper was to develop a swift 

heuristic algorithm for the periodic vehicle routing 

problem. As it is apparent from the results, our 

heuristic algorithm reached to the better solution for 

two instances compared with answers of heuristic 

algorithms from the literature, Also this compression 

shown that the algorithm has the ability to find very 

good answers for all instances.  In compression with 

Meta heuristic algorithms the results showed that the 

proposed algorithm has good quality, with reaching to 

the better solution in one instance.  

In addition the proposed algorithm was supreme in 

computational time. Especial attributes make it 

appropriate to be used for large scale problems as an 

upper bound for PVRP. Applications of this algorithm 

is in situations in which finding an acceptable answer 

for periodic vehicle routing problem in the very limited 

time is required, the location periodic vehicle routing 

problem and robust periodic vehicle routing problem 

are some applications area. Furthermore, the answers 

can be used as initial solutions for improvement 

algorithms like metaheuristics which can be considered 

in next studies. 
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