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INFORMATION COVARIANCE MATRICES FOR
MULTIVARIATE BURR III AND LOGISTIC
DISTRIBUTIONS

Gh. Yari & A.M. Djafari

Abstract: Main result of this paper is to derive the exact analytical expressions of
information and covariance matrices for multivariate Burr Il and logistic
distributions. These distributions arise as tractable parametric models in price and
income distributions, reliability, economics, Human population, some biological
organisms to model agricultural population data and survival data. We showed
that all the calculations can be obtained from one main moment multi dimensional
integral whose expression is obtained through some particular change of variables.
Indeed, we consider that this calculus technique for improper integral has its own

importance.
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1. Introduction

In this paper the exact form of Fisher information
matrices for multivariate Burr III and logistic
distributions is determined. It is well-known that the
information matrix is a valuable tool for derivation of
covariance matrix in the asymptotic distribution of
maximum likelihood estimations (MLE). In the
univariate case for Pareto (IV) and Burr XII
distributions, the Fisher information matrix is found by
Brazauskas [4] and Watkins [12]. As discussed in
Serfling [11], section 4, under suitable regularity
conditions, the determinant of the asymptotic
covariance matrix of (MLE) reaches and optimal lower
bound for the volume of the spread ellipsoid of joint
estimators. In multivariate case for Pareto (IV) and
related distributions, the Fisher information matrices
are found by Yari and Djafari[13] . The univariate
logistic distribution has been studied rather extensively
and, in fact, many of its developments through the
years were moltivative to the normal distribution; for
details see the handbook of Balakrishnan [3]. However,
work on multivariate logistic distribution has been
rather skimpy compared to the volumininous work that
has been carried out on bivariate and multivariate
normal distributions, Gumbel [8], Arnold [2], Johnson,
Kotz and Balakrishnan[9], and Malik and Abraham
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[10]. For a broad discussion of logistic models and
diverse applications see Malik and Abraham [10]. Burr
III distribution arise as tractable parametric model have
been formulated in the context of actuarial science
reliability economiecs price and income distributions,
Dagum [7], Burr [5] and Burr [6]. Logistic distribution
arise as tractable parametric model have been
formulated in human population, some biological
organisms to model agricultural production data and
survival data. This paper is organized as follows:
Multivariate Burr III and logistic distribution are
introduced and presented in section 2. Elements of the
information and covariance matrix for multivariate
Burr II1 distribution is derived in section 3. Elements of
the information and covariance matrix for multivariate
logistic distribution is derived in section 4. Conclusion
is presented in section 5. Derivation of first and second
derivatives of the log density function of multivariate
Barr III distribution and calculation of its main moment
integral are given in Appendices A and B . Derivation
of first and second derivatives of the log-density of
multivariate logistic distribution and calculation of its
main moment integral are given in Appendices C and
D.

2 Multivariate Burr III and Logistic
Distributions
The density function of the Burr III distribution is:
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where —oo < u < +oo is the location parameter, 8 >0

is the scale parameter, ¢ >0 and « > 0 are the shape
parameters which characterize the tail of the
distribution.

The n-dimensional Burr I1I distribution is
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where x =[xy, ... ,x,], x; > g; ,¢; >0, —00 < g; < +00
,a>0,6;,>0 for i=1,..,n. One of the main

properties of this distribution is that, the joint density
of any subset of the components of a multivariate Burr
IIT random vector is again of the form (2) [9]. The
density of the logistic distribution is

- @D
fx (@)= %e_[euj 1+ e_[Tu) x>, (3)

where —oo < g <400 is the location parameter , 6 >0

is the scale parameter and « >0 is the shape
parameter.
The n-dimensional logistic distribution is
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where x=[x;,...,x,], 5> , a>0, —o<y <40

and 6; >0 for i=1,...,n

subset of the components of a multivariate logistic
random vector is again of the form (4) [9].

. The joint density of any

3. Information Matrix for Multivariate Burr
111
Suppose X is a random vector with the
probability density function where ® = (6, ,6,,...0x).
The information matrix /(®)is the K x K matrix with
elements

2
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For the multivariate Burr III, we have
O=0y,... 1y .0 ,....0,,c1,....,c,,) . In order to make
the multivariate Burr III distribution a regular family

(in terms of maximum likelihood estimation), we
assume that vector x is known and, without loss of

generality, equal to 0. In this case information matrix is
(2n+1)x(2n+1) . Thus, further treatment is based on

the following multivariate density function.

—(a+n)
AGE 1+Z<
Jj=l O
H(““ LE w0 @)

The log-density function is:
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Since the information matrix /(®) is symmetric, it is
enough to find elements  /;(®), where

1<i<j<2n+1. The first and second partial
derivatives of the above expression are given in the

Appendix A . In order to determine the information
matrix and score functions, we need to find:
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evaluation of the required orders partial derivatives of
the last expectation at the required points.

3-1. Main Strategy to Obtain Expressions of the
Expectations
Derivation of these expressions are based on the
following strategy: first, we derive an analytical
expression for the following integral:

[
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and then we show that all other expressions can be
found easily from this. We consider this derivation as
one of the main contributions of this work. This
derivation is given in the Appendix B. The result as the
following :
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where I is the usual Gamma function,
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where the integers n,m are nonnegative. Specifically,

we use digamma W(z)=¥")(z), trigamma

Y'(z) and ¥, (z) functions, Abramowitz [1] and
Brazauskas [4]. To confirm the regularity of In f, (x)

and evaluation of the expected Fisher information
matrix, we take expectations of the first and second
order partial derivatives of (7). All other expressions
can be derived from this main result. Taking derivative
with respect to & , from the both sides of the relation

1= [ Fux)d. (10)
leads us to
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From the relation (9), for a pair of (z,k) we have
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evaluating this expectation at v, =—¢; , r; = —2¢; and

the relation (12) at (7, = —¢; , 7, = —cy ) , we obtain:
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Evaluating the required orders partial derivatives of
(13) and (12) at the required points, we have
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From (14), (15) and (16) with « replaced by (a +1)
and (a +2) in (6), we can show that
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3-2. Expectations of the Score Functions
The expectations of the first three derivations of
the first order follow immediately from the
corresponding results for their three corresponding

parameters and we obtain:
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3-3. The Expected Fisher Information Matrix
Main strategy is again based on the integral (9)
which is presented in the Appendix B. After some

tedious algebraic simplifications,

expressions can be obtained:

= (a+i-1)
LxO.a)=5 (;,+ n)
I (er.a) = —ﬁ[m) ),
2
[x(ez) :M , 1=1,...,n,
O (a+n+1)

Ii(e)) = —%[1 +I7(2) - 2¥(a)I'(2)

¢

2

+¥2(@¥'(@)]-——
c;(a+n+1)

the following

e2y)

(22)

=11, (23)

24

[-T'3)¥(a)+ VY2 () + V() +%r"(3)] Jl=1,..n.



Gh. Yari & A.M. Djafari

13

CiCk
919/{ (C( +n+ 1)

Ix(ﬁl,Hk)=— , kil,(26)
Ix(cl’ck):

Q) -T'QCY, (@) +¥, @) +¥,, @ @27)
ce, (a+n+l) ’

k=1,
[T+ Y, (@)

IX(HI’Ck)_ chk(a+n+1) ¢l’ (28)
_["2)Y ()] | [2¥(2)-T"'(3)]
e = aen sl 29

[=1,..,n.

Thus the information matrix, [g,,, ;;(®), for the

multivariate Burr 111 (0,8, ¢, ) distribution is:
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3-4. Covariance Matrix for Multivariate Burr III

Since the joint density of any subset of the
components of a multivariate Burr III random vector is
again a multivariate Burr III [9], we can calculate the
expectation:
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Evaluating this expectation at (m; =1,m;, =0),
(my =0,my =1), (m; =1,my =1) and (my =m, my =0)
we obtain:

0

EX 1=+ Mo+ L), ()
(@) ¢ ¢

EIX, 1= +—2— +[(a+-)T(1--D)], 63)
') c, c,
ELX Xy )=y ELX 1+ g ELX 1= gy

w20 rge e Dra-bra-Ly, 69
I'ex) ¢, ¢, c, c
EX =2 @+ ™yra-", (33)
[a) ¢ ¢
2 A
O'X = 3
" T (@)
36
{r(mz)r(l—z)r(a)—rz(l—l)rz(a+1), (36)
¢ c ¢ ¢
1—£>O,
&
06 1 1
X X, 1=—T0-)Ir(1-—
cov[X, . X, ] @) ( Cz)( Ck)
[T(a + 1, i)r(a) G7)
C, C

1 1
T(a+—)'(a+—)],

Cy ¢
1<l<k<n, k=2,..,n.

4. Information Matrix for Logistic Distribution
For the multivariate logistic distribution, we have
O=( s tty,0,....0, ).
In order to make the multivariate logistic distribution a
regular family ( in terms of maximum likelihood
estimation), we assume that vector g is known and,
without loss of generality equal to 0 . In this case
information matrix is of order (n+1)x(n+1).Thus,
further treatment is based on the following multivariate
density function
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Thus, the log- density function is :
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Since the information matrix /(®) is symmetric it is
enough to find elements /;;(®), where 1<i<j<n+l.

The first and second partial derivatives of the above
expression are given in the Appendix C. Looking at
these expressions, we see that to determine the
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expression of the information matrix and score
functions, we need to find the following expectations

. r[ rk
n -Gl A oy
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and evaluation of the required orders partial derivatives
of the last expectation at the required points.

4-1. Main Strategy to Obtain Expressions of the
Expectations
Derivation of these expressions are based on the
following strategy: first, we derive an analytical
expressiorfor the following integral :
"
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and then, we show that all the other expressions can be
found easily from it. This derivation is given in the

Appendix D . The result is the following:
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Taking derivative with respect to o , from the both
sides of the relation
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Differentiating first and second order of (45) with
respect to 7; and replacing for =0, 7, =1 and

r; =2 , we obtain the following relations:
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With « replaced by (a+1) and (o +2) in (38) we
obtain
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4-2. Expectations of the Score Functions

The expectations of the first two derivations of the
first order follow immediately from the corresponding
results for their two corresponding parameters and we
obtain:
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4-3. The Expected Fisher Information Matrix

Main strategy is again based on the integral (40)
which is presented in the Appendix D.
After some tedious algebraic simplifications, the
following expressions can be obtained.

n

1
1 =) —, 59
(@) ;1 I (59)
1
I = [¥(a)-T'(2
(O ) =S¥ @) T, )

[=1,...,n,
(a+n-1)
0] (a+n+1)
[W2(a)-2T"(2) ¥ (a)+T"(2)+ ¥'(a)], OV
+L—2{M}, [=1...n.

Ix (91):

0, 0} (a+n+1)

I (01 :0 ):
F(2)[F @)-Y, (0)-Y, ()]+Y,, (o) (62)
00 (a+n+1) ’
k#l.

Thus the information matrix , 7;(®), for the

multivariate logistic (0,6,¢) distribution is
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4-4. Covariance Matrix for Multivariate Logistic

Since the joint density of any subset of the
components of a multivariate logistic random vector is
again multivariate logistic distribution (4) [9], we can
use the relation (44), (47) and obtain

p(r; =0, =0) = E[X; X ]

0,0,
=6,6,[(T'(1)* ~T'()(Y, ()
~¥, @)+, (@), (64)
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E[X,1=6[¥Y(a)-T'D)], k =1,...,n. (66)
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From second order derivative of relation (44), we have

0
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5. Conclusion

In this paper we obtained the exact forms of Fisher
information and covariance matrices for multivariate
Burr III and multivariate logistic distributions. We
showed that in both distributions, all of the
expectations can be obtained from two main moment
multi dimensional integrals which have been
considered and whose expression is obtained through
some particular change of variables. A short method of
obtaining some of the expectations as a function of
« is used. To confirm the regularity of the multivariate
densities, we showed that the expectations of the score
functions are equal to 0 ,
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Appendix A: Expressions of the Derivatives

In this Appendix, we give detail, the expressions for
the first and second derivatives of In f),(x), where,
[ (x) is the multivariate Burr III density function (6),

which are needed for obtaining the expression of the
information matrix:
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Appendix B. Expression of the Main Integral

This Appendix gives one of the main results of this
paper which is the derivation of the expression of the
following integral:

E[Hl [j_j 1 [T [2—) fadx.

where, f,(x) is the multivariate Burr III density

function (6). This derivation is done in the following
steps:
First consider the following one dimensional integral :

—(a+n)
_ Qacy X1.5 X1 \~(¢+)
C = j i D] 14 d
=l ) @ Z( 5, x1
—(a+n)
_ ac X i( X1\ —~(c;+1) 1+
[ G G0 Z(
—(a+n)
Ch
o P S dx. 2)

n X —c
1+ (™
j=2 J

Note that, goings first line to second line is just a
factorizing and rewriting the last term of the integrand.
After many reflections on the links between Burr
families and Gamma and Beta functions, we found that
the following change of variable:

X,
(=5

3

1+ b, = ! , 0<t <1, ®)

I+Z(x7j)7cr 1—1
Jj=2 9j

simplifies this integral and guides us to the following
result.
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Then we consider the following similar expression:
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and again using the following change of variable:
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we obtain :
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Continuing this method, finally, we obtain the general

expression:
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Appendix C. Expressions of the Derivatives
In this Appendix, we give in detail the expressions
for the first and second derivatives of In f,,(x), where,

f,(x) is the multivariate logistic density function (38),

which are needed for obtaining the expression of the
information matrix:
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Appendix D. Expression of the Main Integral

This Appendix gives the second main result of this
paper which is the derivation of the expression of the
following integral

)
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where, f,(x) is the multivariate logistic density o X —(a+n)tn,+1
. . o . . —(Zn=L -1 -2
function (38). This derivation is done in the following (6’n_1) < (6’,-)
xe 1+ Z e dx,
steps : =1
First consider the following one dimensional integral : /
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simplifies this integral and guides us to the following
result
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Then we consider the following similar expression:
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Continuing this method, finally, we obtain the general
expression:
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