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AA  NNEEWW  SSTTRRAATTEEGGYY  FFOORR  TTRRAAIINNIINNGG  RRBBFF  NNEETTWWOORRKK  
WWIITTHH  AAPPPPLLIICCAATTIIOONNSS  TTOO  NNOONNLLIINNEEAARR  IINNTTEEGGRRAALL  

EEQQUUAATTIIOONNSS  
 

AA..  GGoollbbaabbaaii,,      MM..  MMaammmmaaddoovv      &&      SS..  SSeeiiffoollllaahhii  
 

Abstract: A new learning strategy is proposed for training of radial basis functions 
(RBF) network. We apply two different local optimization methods to update the 
output weights in training process, the gradient method and a combination of the 
gradient and Newton methods. Numerical results obtained in solving nonlinear 
integral equations show the excellent performance of the combined gradient 
method in comparison with gradient method as local back propagation algorithms. 

 
Keywords: RBF network, Gradient method, Newton's method, Nonlinear integral 
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1. Introduction1 

Radial basis functions (RBF) neural networks 
were first brought to widespread attention by 
Broomhead and Lowe [1] in 1988. Moody and Darken 
[2], Renals and Rohwer [3], and Girosi and Poggio [4] 
among others made major contributions to the theory, 
design, and application of RBF networks. RBF 
networks provide an attractive approach for function 
approximation because of their simple architecture, 
computational efficiency, powerful generalization 
capability, and learning schemes. These networks as 
presented earlier have been shown to be universal 
approximators, i.e. theoretically, any continuous 
function defined on a compact set can be approximated 
to a prescribed degree of accuracy by increasing the 
number of hidden nodes (see [4], [5], [6] and [7]). 
In training RBF network, decisions are made on the 
number of hidden nodes, the widths of the functions, 
and the output layer training. The number of hidden 
nodes and the widths are generally decided in advance 
by examining the vectors in the training data. Then 
some prespecified optimization methods, for example 
the gradient based methods or other techniques in the 
literature, can be adopted to update the weights 
connecting the hidden layer and the output layer which 
measure the strength of the connections between nodes. 
Of course, we still can use the optimization method to 
update all parameters of the network.  
The steepest descent method (gradient method) is 
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commonly used in neural network training. However, 
this method suffers from the slow training speed and is 
easy plunging into local minima. In order to accelerate 
training speed and avoid spurious local minima, many 
methods have been used to overcome these difficulties 
[8]. One way to overcome these difficulties is the use 
of descent direction methods involving combination of 
different local methods. In recent years, there has been 
a growing interest in applying different combination 
methods for the optimization task. Among several 
existing combinations in the literature, the combination 
of steepest descent and Newton�s methods seems to be 
more promising for unconstrained problems [9]. It is 
shown that this method is global convergent and at the 
same time has a good convergence rate. This method 
can be used instead of the gradient method in 
backpropagation phase of the network training to 
overcome the above mentioned difficulties. 
 In recent years, RBF network has emerged as an 
important type of method for the numerical solution of 
differential equations and more recently it was used for 
solving linear integral equations (see [10] and [11]). In 
the present paper, we solve nonlinear Fredholm 
integral equations by using RBF network. From the 
variety of learning algorithms for the RBF network in 
the literature such as the OLS algorithm [12], the 
resource allocation network [13], and various 
implementations of adaptively growing and pruning 
algorithms (see [14], [15], [16] and [17]), we consider 
a simple structure of growing algorithm. In the 
implementation of this algorithm, a trial solution of the 
integral equation is given by the neural network of 
incremental architecture with a set of unknown 
parameters. Then, these parameters are trained by 
minimizing an appropriate error function composed of 
the problem residua. This error function can be easily 
expressed as an unconstrained optimization problem. 
Different numerical techniques can be applied to solve 
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it. In this study, after the RBF parameters are fixed, the 
output weights by using a local optimization method is 
updated. We adopt two different local optimization 
methods, the gradient method and the combined 
gradient method. The performance of these methods is 
compared in solving nonlinear Fredholm integral 
equations. 
 

22..  RRBBFF  NNeettwwoorrkk  AArrcchhiitteeccttuurree  
The basic architecture of a RBF network is consist 

of three entirely different layers. The nodes within each 
layer are fully connected to the previous layer. The first 
layer is an input layer in which each node corresponds 
to an attribute of an input sample, and pass directly to 
the hidden layer without weights, i.e., the weight 
connection is unity. The second layer is a hidden layer 
that serves a different purpose from that of the output 
layer. The third layer is an output layer responding to 
the input samples. The transformation from the input 
layer to the hidden layer is nonlinear, whereas the 
transformation from the hidden layer to the output 
layer is linear. An activation function for a hidden layer 
node is a locally radially symmetric function. A 
popular choice of the RBF is as follows:  

 

(1)��2 2( ) exp( 2 ),i ia    ix x c  
 

where x  is an input vector, ic  and ia  are the center 

and the width of i -th hidden node respectively, and 

||||   is the Euclidean norm. 

Without loss of generality, we consider a RBF network 
with only one output. Mathematically, for input vector 
x  the output of RBF network, which implements a 
sum of arbitrary basis functions defined on its inputs, is 
potentially a flexible and efficient structure for 
approximating arbitrary nonlinear functions, which is 
expressed as: 
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where m  is the number of hidden nodes and iw  is the 

weight from i -th RBF node to the output node. For 
more details about RBF and RBF network, we refer to 
the recent books by Buhmann [18] and Haykin [19].  
 

33..  OOppttiimmiizzaattiioonn  SSttrraatteeggiieess  
The error function most commonly used in the 

RBF network is the sum square error (SSE). For a RBF 
network with one output node the SSE can be written 
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where 2
,mpe  is the output residual in the presence of the 

p -th input sample, m  is the number of hidden nodes, 

n  is the number of input samples to be trained, and 
( , , )z w c a  stands for the network parameters where 

1{ ,..., }mw w w , 1{ ,..., }mc c c and 1{ ,..., }ma a a  used 

in (1)-(3). 
In nonlinear case, the minimization of the error 
function is usually carried out using iterative methods. 
This is basically due to the fact that there are no 
analytical methods to find the optimal parameters. To 
find a solution of this problem, among the variety of 
the existing methods, the descent direction methods are 
the most commonly used techniques in this area due to 
their fast convergence property. If we denote ( )kl z  

by kg , then the steps of the general descent direction 

methods for solving problem (3) are as follows: 
 
3.1. Algorithm: General Descent Method 
0. Choose a starting point q

0z R , and an error 

tolerance 0  . 
1. For ,...2,1,0k . 

2. If kg  , then stop. 

3. Compute the descent direction kd  at kz  

satisfying 
 

(4)��0.t
k kg d   
 

4. Determine an appropriate step length 0k  . 

5. Set 
k +1 k k kz z d  , and go to step 1. 

The above algorithm is a very general algorithm, and 
there are different methods correspond to different 

ways of choosing 
kd  and k  where 

kd  is a general 

descent direction and k  is a line search factor. There 

are some criterions for accepting k  as an admissible 

step length such as backtracking method, Armijo, 
Goldestain and Wolfe line search methods. In Wolfe 

case, the step length k  is determined by an inexact 

line search along the direction kd  satisfying 
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t
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where )21,0(1  and )1,( 12    are constant 

parameters. By considering Wolfe conditions (5) and 
(6) and assuming that the gradient is uniformly 
continuous on the level set )},()(:{ 0zlzlz k   it 

is shown that the above algorithm is global convergent 
[8]. 
One of the most widely used methods is the steepest 
descent method (or gradient method), in which 
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k kd g  , for all k . This method is global convergent 

and can be used to find a local solution of (3). 
Unfortunately, although the method is of global 
convergent property and usually works well in some 
early steps, as a stationary point is approached, it 
descends very slowly with zigzagging phenomena. In 
fact, it is shown that the convergence rate of the 
gradient method is at least linear [8]. 
In order to cope with the above-mentioned problem, 
Newton based methods with better convergence 
property can be used. At the k th iteration, the classical 
Newton's direction is the solution of the following 
system. 
 

(7) ,kk gdH   
 

where 
kH  is the Hessian matrix at kz . If 

kH  is 

positive definite then the Newton's direction is a 
descent direction and consequently the system has a 
unique solution. Even when 

kH  is positive definite, it 

is not guaranteed that Newton method has the global 
convergence property. Consequently, although Newton 
method generally converges in fewer iterations than 
gradient method, it depends on a starting point. 
On the other hand, the application of Newton�s method 
to the learning of neural networks is expensive for 
large structures. A number of techniques avoiding the 
direct computation of 

kH  may be used. These 

techniques are based generally on suitable 
approximations of the Hessian. Other alternative 
approaches are the combination methods which have 
been attracted extensive attention in recent years. In 
these approaches, in most cases the search direction is 
considered as a combination of different directions. 
One of the most successful method of this group is a 
combination of gradient and Newton based methods, 
especially, when the direction is made so that as close 

as possible to the Newton method [15]. If  ,  , 1  

and 2  be four parameters so that 0 1  , 0 1  , 

10 1 2   and 1 2 1   , then the combined 

gradient algorithm is as follows: 
 
3.2. Algorithm: Combined Gradient Method 

0. Choose a starting point 0
qz R , and an error 

tolerance 0  . 
1. For ,...2,1,0k . 

2. If kg  , then stop. 

3. If (7) is solvable at kz , compute the Newton's 

direction 1d  at kz  from (7)  and go to step 4. 

Otherwise, compute the gradient direction 2d  at 

kz , set 
2kd d  and go to step 8. 

4. If 1k   or if 1k kg g  , set 1kz z d   

and go to step 5, otherwise go to step 6. 
5. If ( ) ( )kl z l z  and )()( kzgzg  , then set 

1kz z   and go to the next iteration, otherwise go 

to step 6. 
6. If 

1 2 1 2d d d d , then set 
1kd d  and go to 

step 8, otherwise go to step 7. 
7. If 

1 2 0d d  , then set 
2kd d  and go to step 8, 

otherwise compute   such that 
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        and set 

1 2(1 )kd d d    . 

8. Determine an acceptable 0k   along kd . 

9. Set 1k k k kz z d    and go to step 1. 

The parameters  ,  , 1  and 2  used in this 

algorithm are: 0.001  , 0.99  , 1 0.001   and 

2 0.9   (for more details see [9]). In [9], they used 

the line search rules (5) and (6) to determine an 

acceptable k . In this paper, we used the following 

procedure which aimed to approximate the analytical 
formula 
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in order to avoid calculating the Hessian matrix 

kH  at 

each iteration [20]. 

 Calculate ks : 
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2
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 Calculate step size  
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Typical values for two user dependent parameters,   
and  , are: 4100 

 , 6100    which, here, 

are considered as 410
  and 1010  (for more 

details see [20] and [21]).  
 

44..  RRBBFF  NNeettwwoorrkk  TTrraaiinniinngg  
Let us consider a RBF network with only one node 

in the output layer. Among the variety of learning 
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methods in the literature, we choose a growing based 
architecture. For the sake of simplicity, in this paper, 
we define the set of centers of RBFs fixed in advance. 
Thus, the determination of the widths and the output 
weights are the unknown parameters of the network 
which must be determined. The values of the widths 
affect significantly on the accuracy of results and the 
determination of these parameters is still a challenging 
problem. These parameters control the amount of 
overlapping of RBFs as well as the network 
generalization. Small values yield a rapidly decreasing 
function whereas larger values result in a more gently 
varying function. In the present study, we first initialize 
the width of the new node and after the output weights 
are updated, the widths of all nodes are optimized 
according to the following procedure given in [15]: 

 
(10)��mitaNtata iii  0),(),0()()1(   

 
where ),0( N  is a random number chosen from a 

Gaussian probability distribution with mean zero and 
variance   and )(tai

 is the i -th width in t -th 

iteration of the training process. If the training error on 
t -th iteration is less than the previous one, then the 
widths are changed according to (10), otherwise, the 
old values of widths are kept. The value   is 
initialized to a fixed value and then modified according 
to the following rule:  
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where 1b  and 2b  are constants close to 1 such that 

11 b  and 12 b , and SSE is the training error. 

The learning algorithm of RBF network to approximate 
any function is briefly summarized below. This 
algorithm is a growing based algorithm in which the 
network is allowed to grow step by step (see [11], [14] 
and [15]). If we denote the set of centers by 

1{ ,..., }mc c c , the set of validation data by 

1 2{ , ,..., }nX x x x  and the set of training data by 
tX  

which here is considered as a subset of X, then the 
algorithm steps are as follows:  

 
4.1. Algorithm: RBF Network Learning 
0. Given a tolerance 0 , 0m  centers from c  

and calculating 
0m  initial values for the widths, 

and a starting point 0mw R  and one sample from 
X , do step 1 to 6. 

1. For ,...2,1,0k . 

2. Apply the local optimization method to obtain the 

unknown parameters (weights) of the network. 
3. Calculate all of the widths by using (10). 

4. If SSE   over the validation data X  or k n , 
then stop, otherwise go to 5. 

5. If 1k  and current validation error greater than 
the old one, then add the number of the hidden 
nodes by one, select its center from c  and 
initialize its width.  

6. Select a new sample from tXX \  and go to the 

next iteration. 
According to the above instruction, the algorithm is 
terminated if the validation error during a given 
iteration less than a given tolerance   or k n . The 
validation error will normally decrease during the 
phase of training, as does the training error. At first, 
this algorithm starts with a few nodes in the hidden 
layer, then we continue the training process by 
incorporating more training samples and more hidden 
nodes one by one and allow the network to grow. This 
yields that the network is reconstructed with less 
complexities.  
When the network begins to over-fit the data, the error 
on the validation set may be begin to rise. To overcome 
to this difficulty and having a network with as possible 
as complexity, selection of new sample and new node 
can be affect in the training process which is described 
below and is different from other existing approaches 
(see [11] and [15]). 
 
4.2. Selection of New node 

To select a new training sample, we calculate the 
error weight 2

,mje  on the set 
tXX \ . Then, we find the 

data with the maximum error weight and add it to the 
training set 

tX . Also for the sake of less computation 

and reducing the number of existing training data, after 
some iteration the new sample is replaced by one of the 
training data.  
More precisely, the error weights on training set 

tX  

are calculated and the data which has the smallest error 
weight is discarded from 

tX  and a new training 

sample from 
tXX \ , which has a maximum distance 

from 
tX  and has not been in the network, is selected.  

 
4.3. Initialization of New Node 

In the beginning of the learning algorithm, we 
define a sufficiently large set of centers distributed 
uniformly. They are selected one by one as a new node 
is inserted to the network. The center of new node is 
chosen so that its distance, from the nearest existing 
center in the network, is the maximum among all the 
other candidate centers not used in the network. We 
initialize the width of the inserted node as mam  , 

where   is a positive constant. The idea behind this 

initialization is that when the network grows ( m  
increases) the values of widths decreases. 
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55..  AApppplliiccaattiioonn  ttoo  IInntteeggrraall  EEqquuaattiioonnss  
In order to show the network performance, we 

consider nonlinear integral equation of Fredholm type: 
 

(12)��),())(,,()( xgdttutxKxu
b

a
  

 
 
where ( )u x  is an unknown function, ( )g x , ( , , )K x t u


 

are given continuous functions, with ( , , )K x t u


 

nonlinear in u . This integral equation has received 
considerable interest in the mathematical applications 
in different areas of engineering, mechanics, potential 
theory, electrostatics, and etc. 
For implying the learning algorithm to (12) and 
obtaining an approximate solution, the error function 
(3) is written as follows: 
 

2

1

( ) [ ( ) ( , , ( )) ( )] ,
n b

a p p a p
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p

l z u x K x t u t dt g x


    
 

 

where au  is an approximate solution to (12) which 

here is considered as in (2). Also, the sets X and c  
used in the learning algorithm are considered as a 
number of points of ],[ ba .  

 
66..  NNuummeerriiccaall  RReessuullttss  

For general nonlinear kernel ),,( utxK


, there is no 

simple way to evaluate analytically the integral (12), so 
a numerical integration scheme is used. In our 
calculations, we use the Simpson numerical integration 
scheme with 20 subintervals. As a measure of the 
accuracy of solutions, the max error is given as  
 

(13)��,)()(max
1

jeja
nj

e xuxuN
t




 
 
where ( )a ju x  and ( )e ju x  are the calculated  and exact 

solutions values at the point jx  and tn  is the number 

of data for testing the network performance. 
In the following results, the functions used in all of the 
hidden nodes are the Gaussian functions, but a number 
of alternatives can also be used (see [18] and [19]). 
Also, when 5n  , the new training sample is replaced 
by one of the existing training data.  
The number of validation data used in the training 
process is 200 data distributed randomly in ],[ ba  and 

the performance of the network is tested using 
500tn   random data of ],[ ba . The numerical results 

using the combined gradient method is compared with 
the results using the gradient method with the same 
nodes. 
The CPU time is measured within MATHEMATICA 
running on (single user) Windows XP Professional 
operating system (version SP 2) with a 1.83 GHz Intel 

Pentium Centrino Duo with 512 MB of RAM. 
 
Example 1. Here we solve (12) with 0a , 1b , 

8)(  xxg , ))(1(21),,( 2 tuutxK 


, and the exact 

solution xxu )(  (see [22]). 

The network begins with one node in the hidden layer 
and as observations are received, new hidden nodes are 
added one by one. By using combined gradient method 
to update the output weights in step (2) of the learning 
algorithm, it is terminated with 5m  nodes and the 
maximum error is 71038173.2 

eN  on total CPU time 

15.137  seconds used in the training process. By using 
the gradient method instead of combined gradient 
method and in order simplify comparison we terminate 
the algorithm when 5m  and the current validation 
error is greater than the old one. 
The maximum error in this case is 41091050.1 eN  

on total CPU time 38.1020  seconds. Also, the 
numerical results with 5m  on some test data points 
are shown in Table 1.  

 
Tab. 1. |)()(| xuxu ea   in some test data points for 

example 1 

x  Gradient method Combined method 

0.0  -5105.40059  -8102.34437  
1.0  -5101.69353  -7102.06671  
2.0  -5103.88651  -8105.86266  

0.3  -5102.97163  -8107.01560  
0.4  -6105.52389  -8106.58316  
0.5  -5101.96329  -8102.07433  
0.6  -5103.36744  -8107.90716  
0.7  -5102.65491  -8102.86902  
0.8  -6109.75199   -7101.07770  
0.9  -5108.11962  -7101.49009  
1.0  -4101.91050  -7102.12532  

 
�������� ʹǤ Here we solve (12) with 0a , 1b , 

)3ln(2)2sin()( xxxg   ,

   1)()sin(4),,( 22
 ttutxxtutxK  , and 

the exact solution )2sin()( xxu  (see [23]).  

Similar to example 1 we start with 1m  node in the 
hidden layer and after some iteration, it is terminated 
with 5m  nodes. By using combined gradient 
method to update the output weights, the maximum 
error is 51073497.1 eN  on total CPU time 5.38  

seconds. By using the gradient method and similar 
termination to example 1, the maximum error is 

3101.37233 eN  on total CPU time 724.142 seconds. 

The numerical results with 5m  on some test data 
points are shown in Table 2. 
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Tab. 2. | ( ) ( ) |a eu x u x  in some test data points for 

example 2 

x  Gradient method Combined method 

0.0  -4105.64785  -5101.73497  
1.0  -4109.04185  -6108.59420  
2.0  -3101.36932  -6106.08925  

0.3  -3101.13305  -6101.15355  
0.4  -4104.87622  -6103.42662  
0.5  -4102.93183  -7105.03367  
0.6  -4109.61713  -6103.08662  
0.7  -3101.30331  -6102.45955  

0.8  -3101.14218  -6103.68792  
0.9  -4103.46185  -6109.73833  
1.0  -3101.16965  -7105.13193  

  
77..  CCoonncclluussiioonn  

Training of RBF network that use gradient or 
combined gradient method as a backpropagation 
algorithm is described and illustrated. In order to keep 
the design of the network simple, the centers and the 
widths of the RBFs are chosen in advance. However, 
they can be included in the list of unknown parameters 
in the optimization procedure, which may require more 
computational time. 
The networks, which trained with both the gradient and 
combined gradient methods, provide only a small 
number of nodes to achieve quite good approximations. 
The numerical examples show that the network with 
the combined gradient method provides more accurate 
solutions than the gradient method (using the same 
number of nodes). Moreover, in the combined gradient 
method case, the learning is much faster. For instance, 
in example 2 with the combined gradient method the 
learning process takes 5.38  seconds, but in the 
gradient method case it takes 724.142  seconds and 
does not achieve as good accuracy as in the case of 
combined gradient method. 
The method developed here can be applied to some 
other types of integral equations. 
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