
IUST International Journal of Engineering Science,
Vol. 19, No.5-2, 2008, Page 1-7

AA NNEEWW SSTTRRAATTEEGGYY FFOORR TTRRAAIINNIINNGG RRBBFF NNEETTWWOORRKK
WWIITTHH AAPPPPLLIICCAATTIIOONNSS TTOO NNOONNLLIINNEEAARR IINNTTEEGGRRAALL

EEQQUUAATTIIOONNSS

AA.. GGoollbbaabbaaii,, MM.. MMaammmmaaddoovv && SS.. SSeeiiffoollllaahhii

Abstract: A new learning strategy is proposed for training of radial basis functions
(RBF) network. We apply two different local optimization methods to update the
output weights in training process, the gradient method and a combination of the
gradient and Newton methods. Numerical results obtained in solving nonlinear
integral equations show the excellent performance of the combined gradient
method in comparison with gradient method as local back propagation algorithms.

Keywords: RBF network, Gradient method, Newton's method, Nonlinear integral
equations

1. Introduction1

Radial basis functions (RBF) neural networks
were first brought to widespread attention by
Broomhead and Lowe [1] in 1988. Moody and Darken
[2], Renals and Rohwer [3], and Girosi and Poggio [4]
among others made major contributions to the theory,
design, and application of RBF networks. RBF
networks provide an attractive approach for function
approximation because of their simple architecture,
computational efficiency, powerful generalization
capability, and learning schemes. These networks as
presented earlier have been shown to be universal
approximators, i.e. theoretically, any continuous
function defined on a compact set can be approximated
to a prescribed degree of accuracy by increasing the
number of hidden nodes (see [4], [5], [6] and [7]).
In training RBF network, decisions are made on the
number of hidden nodes, the widths of the functions,
and the output layer training. The number of hidden
nodes and the widths are generally decided in advance
by examining the vectors in the training data. Then
some prespecified optimization methods, for example
the gradient based methods or other techniques in the
literature, can be adopted to update the weights
connecting the hidden layer and the output layer which
measure the strength of the connections between nodes.
Of course, we still can use the optimization method to
update all parameters of the network.
The steepest descent method (gradient method) is

Paper first received July. 15, 2008, and in revised form
May. 17, 2009.
A. Golbabai is with the Department of Mathematics, Iran University
of Science and Technology, Tehran, Iran. golbabai@iust.ac.ir
M. Mammadov is with the School of Information & Mathematical
Science, Ballarat University, Ballarat VIC, Australia.
m.mammadov@ballarat.edu.au
S. Seifollahi is with the Department of Mathematics, University of
Mohaghegh Ardabili, Ardabil, Iran, sattarseif@gmail.com

commonly used in neural network training. However,
this method suffers from the slow training speed and is
easy plunging into local minima. In order to accelerate
training speed and avoid spurious local minima, many
methods have been used to overcome these difficulties
[8]. One way to overcome these difficulties is the use
of descent direction methods involving combination of
different local methods. In recent years, there has been
a growing interest in applying different combination
methods for the optimization task. Among several
existing combinations in the literature, the combination
of steepest descent and Newton�s methods seems to be
more promising for unconstrained problems [9]. It is
shown that this method is global convergent and at the
same time has a good convergence rate. This method
can be used instead of the gradient method in
backpropagation phase of the network training to
overcome the above mentioned difficulties.
 In recent years, RBF network has emerged as an
important type of method for the numerical solution of
differential equations and more recently it was used for
solving linear integral equations (see [10] and [11]). In
the present paper, we solve nonlinear Fredholm
integral equations by using RBF network. From the
variety of learning algorithms for the RBF network in
the literature such as the OLS algorithm [12], the
resource allocation network [13], and various
implementations of adaptively growing and pruning
algorithms (see [14], [15], [16] and [17]), we consider
a simple structure of growing algorithm. In the
implementation of this algorithm, a trial solution of the
integral equation is given by the neural network of
incremental architecture with a set of unknown
parameters. Then, these parameters are trained by
minimizing an appropriate error function composed of
the problem residua. This error function can be easily
expressed as an unconstrained optimization problem.
Different numerical techniques can be applied to solve

id19836296 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:golbabai@iust.ac.ir
mailto:m.mammadov@ballarat.edu.au
mailto:sattarseif@gmail.com

2 AA NNeeww SSttrraatteeggyy ffoorr TTrraaiinniinngg RRBBFF NNeettwwoorrkk wwiitthh AApppplliiccaattiioonnss ttoo ��

it. In this study, after the RBF parameters are fixed, the
output weights by using a local optimization method is
updated. We adopt two different local optimization
methods, the gradient method and the combined
gradient method. The performance of these methods is
compared in solving nonlinear Fredholm integral
equations.

22.. RRBBFF NNeettwwoorrkk AArrcchhiitteeccttuurree
The basic architecture of a RBF network is consist

of three entirely different layers. The nodes within each
layer are fully connected to the previous layer. The first
layer is an input layer in which each node corresponds
to an attribute of an input sample, and pass directly to
the hidden layer without weights, i.e., the weight
connection is unity. The second layer is a hidden layer
that serves a different purpose from that of the output
layer. The third layer is an output layer responding to
the input samples. The transformation from the input
layer to the hidden layer is nonlinear, whereas the
transformation from the hidden layer to the output
layer is linear. An activation function for a hidden layer
node is a locally radially symmetric function. A
popular choice of the RBF is as follows:

(1)��2 2() exp(2),i ia ix x c

where x is an input vector, ic and ia are the center

and the width of i -th hidden node respectively, and

|||| is the Euclidean norm.

Without loss of generality, we consider a RBF network
with only one output. Mathematically, for input vector
x the output of RBF network, which implements a
sum of arbitrary basis functions defined on its inputs, is
potentially a flexible and efficient structure for
approximating arbitrary nonlinear functions, which is
expressed as:

(2)��
1

() (),
m

i i
i

u w

x x

where m is the number of hidden nodes and iw is the

weight from i -th RBF node to the output node. For
more details about RBF and RBF network, we refer to
the recent books by Buhmann [18] and Haykin [19].

33.. OOppttiimmiizzaattiioonn SSttrraatteeggiieess
The error function most commonly used in the

RBF network is the sum square error (SSE). For a RBF
network with one output node the SSE can be written

(3)��2
,

1

() ,
n

p m
p

l z e

where 2
,mpe is the output residual in the presence of the

p -th input sample, m is the number of hidden nodes,

n is the number of input samples to be trained, and
(, ,)z w c a stands for the network parameters where

1{ ,..., }mw w w , 1{ ,..., }mc c c and 1{ ,..., }ma a a used

in (1)-(3).
In nonlinear case, the minimization of the error
function is usually carried out using iterative methods.
This is basically due to the fact that there are no
analytical methods to find the optimal parameters. To
find a solution of this problem, among the variety of
the existing methods, the descent direction methods are
the most commonly used techniques in this area due to
their fast convergence property. If we denote ()kl z

by kg , then the steps of the general descent direction

methods for solving problem (3) are as follows:

3.1. Algorithm: General Descent Method
0. Choose a starting point q

0z R , and an error

tolerance 0 .
1. For ,...2,1,0k .

2. If kg , then stop.

3. Compute the descent direction kd at kz

satisfying

(4)��0.t
k kg d

4. Determine an appropriate step length 0k .

5. Set
k +1 k k kz z d , and go to step 1.

The above algorithm is a very general algorithm, and
there are different methods correspond to different

ways of choosing
kd and k where

kd is a general

descent direction and k is a line search factor. There

are some criterions for accepting k as an admissible

step length such as backtracking method, Armijo,
Goldestain and Wolfe line search methods. In Wolfe

case, the step length k is determined by an inexact

line search along the direction kd satisfying

(5)��,)()(1 k
t
kkkk dgzldzl

(6)��,21 k
t
kk

t
k dgdg

where)21,0(1 and)1,(12 are constant

parameters. By considering Wolfe conditions (5) and
(6) and assuming that the gradient is uniformly
continuous on the level set)},()(:{ 0zlzlz k it

is shown that the above algorithm is global convergent
[8].
One of the most widely used methods is the steepest
descent method (or gradient method), in which

AA.. GGoollbbaabbaaii,, MM.. MMaammmmaaddoovv && SS.. SSeeiiffoollllaahhii 33

k kd g , for all k . This method is global convergent

and can be used to find a local solution of (3).
Unfortunately, although the method is of global
convergent property and usually works well in some
early steps, as a stationary point is approached, it
descends very slowly with zigzagging phenomena. In
fact, it is shown that the convergence rate of the
gradient method is at least linear [8].
In order to cope with the above-mentioned problem,
Newton based methods with better convergence
property can be used. At the k th iteration, the classical
Newton's direction is the solution of the following
system.

(7) ,kk gdH

where
kH is the Hessian matrix at kz . If

kH is

positive definite then the Newton's direction is a
descent direction and consequently the system has a
unique solution. Even when

kH is positive definite, it

is not guaranteed that Newton method has the global
convergence property. Consequently, although Newton
method generally converges in fewer iterations than
gradient method, it depends on a starting point.
On the other hand, the application of Newton�s method
to the learning of neural networks is expensive for
large structures. A number of techniques avoiding the
direct computation of

kH may be used. These

techniques are based generally on suitable
approximations of the Hessian. Other alternative
approaches are the combination methods which have
been attracted extensive attention in recent years. In
these approaches, in most cases the search direction is
considered as a combination of different directions.
One of the most successful method of this group is a
combination of gradient and Newton based methods,
especially, when the direction is made so that as close

as possible to the Newton method [15]. If , , 1

and 2 be four parameters so that 0 1 , 0 1 ,

10 1 2 and 1 2 1 , then the combined

gradient algorithm is as follows:

3.2. Algorithm: Combined Gradient Method

0. Choose a starting point 0
qz R , and an error

tolerance 0 .
1. For ,...2,1,0k .

2. If kg , then stop.

3. If (7) is solvable at kz , compute the Newton's

direction 1d at kz from (7) and go to step 4.

Otherwise, compute the gradient direction 2d at

kz , set
2kd d and go to step 8.

4. If 1k or if 1k kg g , set 1kz z d

and go to step 5, otherwise go to step 6.
5. If () ()kl z l z and)()(kzgzg , then set

1kz z and go to the next iteration, otherwise go

to step 6.
6. If

1 2 1 2d d d d , then set
1kd d and go to

step 8, otherwise go to step 7.
7. If

1 2 0d d , then set
2kd d and go to step 8,

otherwise compute such that

}

.)1(

)1(
,10;min{

221

221

ddd

ddd t

 and set

1 2(1)kd d d .

8. Determine an acceptable 0k along kd .

9. Set 1k k k kz z d and go to step 1.

The parameters , , 1 and 2 used in this

algorithm are: 0.001 , 0.99 , 1 0.001 and

2 0.9 (for more details see [9]). In [9], they used

the line search rules (5) and (6) to determine an

acceptable k . In this paper, we used the following

procedure which aimed to approximate the analytical
formula

(8)��
kk

t
k

k
t
k

k dHd

gd
 ,

in order to avoid calculating the Hessian matrix

kH at

each iteration [20].

 Calculate ks :

k

kkkk
k d

zlddzl
s

)()(
 .

 Calculate kk
t
kk dsd .

 If 0k , set
2

kkk d .

 Calculate step size

(9)��
k

k
t
k

k

gd

 .

Typical values for two user dependent parameters,
and , are: 4100

 , 6100 which, here,

are considered as 410
 and 1010 (for more

details see [20] and [21]).

44.. RRBBFF NNeettwwoorrkk TTrraaiinniinngg
Let us consider a RBF network with only one node

in the output layer. Among the variety of learning

4 AA NNeeww SSttrraatteeggyy ffoorr TTrraaiinniinngg RRBBFF NNeettwwoorrkk wwiitthh AApppplliiccaattiioonnss ttoo ��

methods in the literature, we choose a growing based
architecture. For the sake of simplicity, in this paper,
we define the set of centers of RBFs fixed in advance.
Thus, the determination of the widths and the output
weights are the unknown parameters of the network
which must be determined. The values of the widths
affect significantly on the accuracy of results and the
determination of these parameters is still a challenging
problem. These parameters control the amount of
overlapping of RBFs as well as the network
generalization. Small values yield a rapidly decreasing
function whereas larger values result in a more gently
varying function. In the present study, we first initialize
the width of the new node and after the output weights
are updated, the widths of all nodes are optimized
according to the following procedure given in [15]:

(10)��mitaNtata iii 0),(),0()()1(

where),0(N is a random number chosen from a

Gaussian probability distribution with mean zero and
variance and)(tai

 is the i -th width in t -th

iteration of the training process. If the training error on
t -th iteration is less than the previous one, then the
widths are changed according to (10), otherwise, the
old values of widths are kept. The value is
initialized to a fixed value and then modified according
to the following rule:

(11)��

,),(

;),(

;),(

)1(2

1

changednotSSEift

decreasedSSEiftb

increasedSSEiftb

t

where 1b and 2b are constants close to 1 such that

11 b and 12 b , and SSE is the training error.

The learning algorithm of RBF network to approximate
any function is briefly summarized below. This
algorithm is a growing based algorithm in which the
network is allowed to grow step by step (see [11], [14]
and [15]). If we denote the set of centers by

1{ ,..., }mc c c , the set of validation data by

1 2{ , ,..., }nX x x x and the set of training data by
tX

which here is considered as a subset of X, then the
algorithm steps are as follows:

4.1. Algorithm: RBF Network Learning
0. Given a tolerance 0 , 0m centers from c

and calculating
0m initial values for the widths,

and a starting point 0mw R and one sample from
X , do step 1 to 6.

1. For ,...2,1,0k .

2. Apply the local optimization method to obtain the

unknown parameters (weights) of the network.
3. Calculate all of the widths by using (10).

4. If SSE over the validation data X or k n ,
then stop, otherwise go to 5.

5. If 1k and current validation error greater than
the old one, then add the number of the hidden
nodes by one, select its center from c and
initialize its width.

6. Select a new sample from tXX \ and go to the

next iteration.
According to the above instruction, the algorithm is
terminated if the validation error during a given
iteration less than a given tolerance or k n . The
validation error will normally decrease during the
phase of training, as does the training error. At first,
this algorithm starts with a few nodes in the hidden
layer, then we continue the training process by
incorporating more training samples and more hidden
nodes one by one and allow the network to grow. This
yields that the network is reconstructed with less
complexities.
When the network begins to over-fit the data, the error
on the validation set may be begin to rise. To overcome
to this difficulty and having a network with as possible
as complexity, selection of new sample and new node
can be affect in the training process which is described
below and is different from other existing approaches
(see [11] and [15]).

4.2. Selection of New node

To select a new training sample, we calculate the
error weight 2

,mje on the set
tXX \ . Then, we find the

data with the maximum error weight and add it to the
training set

tX . Also for the sake of less computation

and reducing the number of existing training data, after
some iteration the new sample is replaced by one of the
training data.
More precisely, the error weights on training set

tX

are calculated and the data which has the smallest error
weight is discarded from

tX and a new training

sample from
tXX \ , which has a maximum distance

from
tX and has not been in the network, is selected.

4.3. Initialization of New Node

In the beginning of the learning algorithm, we
define a sufficiently large set of centers distributed
uniformly. They are selected one by one as a new node
is inserted to the network. The center of new node is
chosen so that its distance, from the nearest existing
center in the network, is the maximum among all the
other candidate centers not used in the network. We
initialize the width of the inserted node as mam ,

where is a positive constant. The idea behind this

initialization is that when the network grows (m
increases) the values of widths decreases.

AA.. GGoollbbaabbaaii,, MM.. MMaammmmaaddoovv && SS.. SSeeiiffoollllaahhii 55

55.. AApppplliiccaattiioonn ttoo IInntteeggrraall EEqquuaattiioonnss
In order to show the network performance, we

consider nonlinear integral equation of Fredholm type:

(12)��),())(,,()(xgdttutxKxu
b

a

where ()u x is an unknown function, ()g x , (, ,)K x t u

are given continuous functions, with (, ,)K x t u

nonlinear in u . This integral equation has received
considerable interest in the mathematical applications
in different areas of engineering, mechanics, potential
theory, electrostatics, and etc.
For implying the learning algorithm to (12) and
obtaining an approximate solution, the error function
(3) is written as follows:

2

1

() [() (, , ()) ()] ,
n b

a p p a p
a

p

l z u x K x t u t dt g x

where au is an approximate solution to (12) which

here is considered as in (2). Also, the sets X and c
used in the learning algorithm are considered as a
number of points of],[ba .

66.. NNuummeerriiccaall RReessuullttss

For general nonlinear kernel),,(utxK

, there is no

simple way to evaluate analytically the integral (12), so
a numerical integration scheme is used. In our
calculations, we use the Simpson numerical integration
scheme with 20 subintervals. As a measure of the
accuracy of solutions, the max error is given as

(13)��,)()(max
1

jeja
nj

e xuxuN
t

where ()a ju x and ()e ju x are the calculated and exact

solutions values at the point jx and tn is the number

of data for testing the network performance.
In the following results, the functions used in all of the
hidden nodes are the Gaussian functions, but a number
of alternatives can also be used (see [18] and [19]).
Also, when 5n , the new training sample is replaced
by one of the existing training data.
The number of validation data used in the training
process is 200 data distributed randomly in],[ba and

the performance of the network is tested using
500tn random data of],[ba . The numerical results

using the combined gradient method is compared with
the results using the gradient method with the same
nodes.
The CPU time is measured within MATHEMATICA
running on (single user) Windows XP Professional
operating system (version SP 2) with a 1.83 GHz Intel

Pentium Centrino Duo with 512 MB of RAM.

Example 1. Here we solve (12) with 0a , 1b ,

8)(xxg ,))(1(21),,(2 tuutxK

, and the exact

solution xxu)((see [22]).

The network begins with one node in the hidden layer
and as observations are received, new hidden nodes are
added one by one. By using combined gradient method
to update the output weights in step (2) of the learning
algorithm, it is terminated with 5m nodes and the
maximum error is 71038173.2

eN on total CPU time

15.137 seconds used in the training process. By using
the gradient method instead of combined gradient
method and in order simplify comparison we terminate
the algorithm when 5m and the current validation
error is greater than the old one.
The maximum error in this case is 41091050.1 eN

on total CPU time 38.1020 seconds. Also, the
numerical results with 5m on some test data points
are shown in Table 1.

Tab. 1. |)()(| xuxu ea in some test data points for

example 1

x Gradient method Combined method

0.0 -5105.40059 -8102.34437
1.0 -5101.69353 -7102.06671
2.0 -5103.88651 -8105.86266

0.3 -5102.97163 -8107.01560
0.4 -6105.52389 -8106.58316
0.5 -5101.96329 -8102.07433
0.6 -5103.36744 -8107.90716
0.7 -5102.65491 -8102.86902
0.8 -6109.75199 -7101.07770
0.9 -5108.11962 -7101.49009
1.0 -4101.91050 -7102.12532

�������� ʹǤ Here we solve (12) with 0a , 1b ,

)3ln(2)2sin()(xxxg ,

 1)()sin(4),,(22
 ttutxxtutxK , and

the exact solution)2sin()(xxu (see [23]).

Similar to example 1 we start with 1m node in the
hidden layer and after some iteration, it is terminated
with 5m nodes. By using combined gradient
method to update the output weights, the maximum
error is 51073497.1 eN on total CPU time 5.38

seconds. By using the gradient method and similar
termination to example 1, the maximum error is

3101.37233 eN on total CPU time 724.142 seconds.

The numerical results with 5m on some test data
points are shown in Table 2.

6 AA NNeeww SSttrraatteeggyy ffoorr TTrraaiinniinngg RRBBFF NNeettwwoorrkk wwiitthh AApppplliiccaattiioonnss ttoo ��

Tab. 2. | () () |a eu x u x in some test data points for

example 2

x Gradient method Combined method

0.0 -4105.64785 -5101.73497
1.0 -4109.04185 -6108.59420
2.0 -3101.36932 -6106.08925

0.3 -3101.13305 -6101.15355
0.4 -4104.87622 -6103.42662
0.5 -4102.93183 -7105.03367
0.6 -4109.61713 -6103.08662
0.7 -3101.30331 -6102.45955

0.8 -3101.14218 -6103.68792
0.9 -4103.46185 -6109.73833
1.0 -3101.16965 -7105.13193

77.. CCoonncclluussiioonn

Training of RBF network that use gradient or
combined gradient method as a backpropagation
algorithm is described and illustrated. In order to keep
the design of the network simple, the centers and the
widths of the RBFs are chosen in advance. However,
they can be included in the list of unknown parameters
in the optimization procedure, which may require more
computational time.
The networks, which trained with both the gradient and
combined gradient methods, provide only a small
number of nodes to achieve quite good approximations.
The numerical examples show that the network with
the combined gradient method provides more accurate
solutions than the gradient method (using the same
number of nodes). Moreover, in the combined gradient
method case, the learning is much faster. For instance,
in example 2 with the combined gradient method the
learning process takes 5.38 seconds, but in the
gradient method case it takes 724.142 seconds and
does not achieve as good accuracy as in the case of
combined gradient method.
The method developed here can be applied to some
other types of integral equations.

RReeffeerreenncceess
[1] Broomhead, D.S., Lowe, D., "Multivariate Functional

Interpolation and Adaptive Networks," Complex Systems,
Vol. 2, 1988, pp. 321-355.

[2] Moody, J.E., Darken, C.J., "Fast Learning in Networks of

Locally-Tuned Processing Units," Neural Computation,
Vol. 1, 1989, pp. 281-294.

[3] Renals, S., Rohwer, R., "Phoneme Classification

Experiments using Radial Basis Function," in Proceedings
of International Joint Conference on Neural Networks, I,
1989, pp. 461�467.

[4] Girosi, F., Poggio, T., "Neural Networks and the Best

Approximation Property," Biological Cybernetics, Vol. 63,
1990, pp. 169-176.

[5] Hartman, E., Keeler, J., Kowalsky, J., "Layered Neural
Networks with Gaussian Hidden Units as Universal
Approximations," Neural Computation, Vol. 2, 1990, pp.
210-215.

[6] Park, J., Sandberg, I.W., "Universal Approximation Using

radial Basis Function Networks," Neural Comput., Vol.
3(2), 1991, pp. 246-257.

[7] Park, J., Sandberg, I., "Approximation and Radial-Basis-

Function Networks," Neural Computation, Vol. 5, 1993,
pp. 305-316.

[8] Nocedal, J., Wright, S.J., Numerical Optimization,

Springer-Verlag, New York, 1999.

[9] Shi, Y., "Globally Convergent Algorithms for Unconstrained

Optimization," Computational Optimization and Applications,
Vol. 16, 2000, pp. 295-308.

[10] Golbabai, A., Seifollahi, S., "Radial Basis Function

Networks in the Numerical Solution of Linear Integro-
Differential Equations," Appl. Math. Comput., Vol. 188,
2007, pp. 427-432.

[11] Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.,

"Numerical Solution of Elliptic Partial Differential
Equation Using Radial Basis Function Neural Networks,"
Neural Networks, Vol. 16, 2003, pp. 729-734.

[12] Chen, S., Cowan, C.F.N., Grant, P.M., "Orthogonal

Least Squares Learning Algorithm for Radial Basis
Function Networks," IEEE Trans. Neural Networks, Vol.
2, 1991, pp. 302-309.

[13] Platt, J.C., "A Resource-Allocating Network for Function

Interpolation," Neural Computation, 1991, pp. 213-225.

[14] Cheng, Y.H., Lin, C.S., "A Learning Algorithm for

Radial Basis Function Networks with the Capability of
Adding and Pruning Neurons," IEEE ICNN, 1994, pp.
797-801.

[15] Esposito, A., Marinaro, M., Oricchio, D., Scarpetta, S.,

"Approximation of Continuous and Discontinuous
Mappings by a Growing Neural RBF-Based Algorithm,"
Neural Networks, Vol. 13, 2000, pp. 651-665.

[16] Lee, S., Shimoji, S., "Self-Organisation of Probabilistic

Network with Gaussian Mixture Model," IEEE ICNN,
1994, pp. 3088-3093.

[17] Lin, C.S., Cheng, Y.H., "Radial Basis Function Networks

for Adaptive Critic Learning," IEEE ICNN, 1994, pp. 903-
906.

[18] Buhmann, M.D., Radial Basis Functions: Theory and

Implementations, Cambridge University Press, Cambridge,
2003.

[19] Haykin, S., Neural Networks: a Comprehensive

Foundation, New Jersey: Prentice-Hall, 1999.

AA.. GGoollbbaabbaaii,, MM.. MMaammmmaaddoovv && SS.. SSeeiiffoollllaahhii 77

[20] Saini, L.M., Soni, M.K., "Artificial Neural Network-
Based Peak Load Forecasting Using Conjugate Gradient
Methods," IEEE Transactions on Power Systems, 17(3),
2002.

[21] Moller, M.F., "A Scaled Conjugate Gradient Algorithm

for Fast Supervised Learning," Neural Networks, Vol. 6,
1993, pp. 525-533.

[22] Yousefi, S., Razzaghi, M., "Legendre Wavelets Method

for the Nonlinear Volterra�Fredholm integral Equations,"
Mathematics and Computers in Simulation, Vol. 70, 2005,
pp. 1-8.

[23] Maleknejad, K., Karami, M., Aghazadeh, N.,

"Numerical Solution of Hammerstein Equations Via an
Interpolation Method," Appl. Math. Comput., Vol. 168,
2005, pp. 141-145.

