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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

This paper deals with the problem of forbidden states in discrete event 

systems modeled by Petri Net. To avoid the forbidden states, some 

constraints which are called Generalized Mutual Exclusion 

Constraints can be assigned to them. Enforcing these constraints on 

the system can be performed using control places. However, when the 

number of these constraints is large, a large number of control places 

must be connected to the system which complicates the model of 

controller. In this paper, the objective is to propose a general method 

for reducing the number of the mentioned constraints and 

consequently the number of control places. This method is based on 

combining some constraints for obtaining a constraint verifying all of 

them which is performed using the optimization algorithms. The 

obtained controller after reducing the number of the control places is 

maximally permissive. 
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11..  IInnttrroodduuccttiioonn

  

Flexible manufacturing systems (FMS) are 

important among the set of discrete event systems 

(DES). An FMS consists of such resources like 

machines, robots and buffers. Crude parts are 

concurrently manufactured by the system sharing the 

limited number of resources. Sharing resources may 

lead to deadlock which is a highly undesirable situation 

in FMS. In deadlock states, each set of two or more 

jobs keeps waiting indefinitely for the other jobs in the 

set to release resources [1], [2]. Therefore, the system 

must be avoided from entering them. To evaluate FMSs 

and also DESs, Petri Net (PN) can be used as a suitable 

tool for modeling them [3]. This tool is composed of 

places, transitions, arcs and tokens. Each transition is 

corresponding to an event and the tokens in the places 
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represent the state of system. Specially, there are a lot 

of methods for preventing the system from entering the 

deadlock states based on PN models [1], [4]-[8]. These 

methods connect some control places to the system for 

the reversibility guaranty. But, the number of these 

places may be large and some of them may be 

redundant. Uzam et al. [2] have proposed a method for 

removing the redundant control places. But in this 

method for a system with n control places, the 

reachability graph must be calculated n times. This 

method is developed in [9] where n Integer linear 

programming (ILP) problems must be solved to 

remove the redundant control places. The advantage of 

these two methods is their generality for non safe PN, 

however the computation takes long time and they 

don’t give the least number of control places.  

Existence of uncontrollable transitions in the system 

may cause some other problems beside the deadlock 

states since these transitions cannot be disabled by the 

controller and the specification may be violated. So, 

the forbidden states can be divided into two sets: the 

states which are related to deadlock and the states that 
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violate the specification. Supervisory control theory 

proposes a strategy for coping with forbidden states in 

DES [10], [11]. This theory tries to obtain the desired 

function of the system by restricting its behavior. This 

restriction can be performed by disabling the 

transitions in some special conditions [12], [13]. But, 

disabling the uncontrollable transitions is impossible. 

In this case before firing these transitions, some 

controllable transitions should be disabled which leads 

to reducing the state space of authorized states [14]. 

In recent years, a lot of methods have been proposed 

for avoiding forbidden states. In [15] and [16], the 

authors calculate some conditions to block the 

controllable transitions in some special situations. But 

in these methods, the dynamic of controller is not clear. 

Ghaffari et al. [17] have proposed a method for 

calculating the control places using regions theory. In 

this method some constraints are generated which 

some of them verify the authorized states and the 

others violate the forbidden states. Then, by solving 

some ILP problems, the control places are generated. 

But in this method the computational time for solving 

the ILP problems is large and also a large number of 

control places are generated generally. The problem of 

the large number of control places may be solved using 

the method in [18]. However, this method does not 

give the least number of control places.  

Generalized Mutual Exclusion Constraints (GMECs) 

are the ones that verifying them may lead to complying 

with the specification and avoiding the forbidden 

states. These constraints can be enforced on the system 

using control places [19]. Giua et al. [20] have 

proposed a method for assigning a GMEC to each 

forbidden state in safe PNs. This method has been 

developed in our previous work [21] where the 

GMECs can be assigned to forbidden states in non safe 

PNs. Enforcing the GMECs related to forbidden states 

on the system prevents it from entering these states. 

But in these methods when the number of forbidden 

states and consequently the number of GMECs is large, 

a large number of control places are connected to the 

system. So, some methods have been proposed for 

reducing the number of GMECs.  

In [22], the authors proposed a method in safe and 

conservative PNs for reducing the number of GMECs 

using invariant property. The conservative limitation is 

removed in the methods in [23] and [24] which use the 

over-state concept for the similar reduction. However, 

these methods are only applicable on safe PNs and do 

not give the least number of control places. In our 

previous work [25], we proposed a method in non safe 

PN for obtaining a control place to avoid all the 

forbidden states. This control place is obtained by 

solving an ILP problem. But this method is a special 

case and can generate an answer in the systems with 

small number of forbidden states.  

In this paper the objective is to propose a general 

method for reducing the number of control places in 

safe and non safe PNs. To perform this reduction, some 

constraints should be generated which some of them 

verify the authorized states and the others violate the 

forbidden states. Then, the constraints must be 

classified in some groups. Each group consists of all 

the constraints related to authorized states plus some of 

the constraints related to forbidden states. At the end, 

by solving an ILP problem for each group, the small 

number of GMECs will be obtained. Enforcing the 

obtained GMECs on the system leads to obtaining a 

maximally permissive behavior. Classifying the 

constraints must generate the small number of groups 

which can be performed using Modified Adaptive 

Particle Swarm Optimization (MAPSO) [26]. At the 

end of this paper, the new method is applied on some 

practical examples and the advantages of the new 

method comparing with the conventional methods are 

shown. 

The rest of this paper is as follows. In section 2, the 

important concept for introducing the new method is 

presented. Our previous work which is the base of the 

new method is presented in section 3. The new method 

is proposed in section 4. Comparing the new method 

with the conventional methods is discussed in section 

5. Finally in section 6 conclusions are presented. 

 

2. Basic Concepts 
In this section we introduce the basic concepts 

which are necessary for introducing the new method. 

We suppose that the reader is familiar with the PN 

basis [27]. 

A PN is represented by a quadruplet R = (P, T, W, M0) 

where P is the set of places, T is the set of transitions, 

W is the incidence matrix and M0 is the initial marking. 

Places are represented by circles and transitions are 

represented by bars. Places and transitions are 

connected together by arcs. Incidence matrix shows the 

relation between places, transitions and arcs. Places 

can be marked by tokens.  PNs can be divided into two 

types: safe PNs and non safe PNs. In safe PNs, the 

number of tokens in each place is one or zero but in 

non safe PNs this number can be more than one. The 

marking of a PN at a given moment is a column vector 

whose i
th

 component is the marking of place Pi at this 

moment. For the sake of simplicity we write the 

markings in the transposed form as follows: 

 
M 

T
 = [m1 … mi … mn] (1) 

 
where mi is the number of tokens in place Pi and n is 

the number of places. 

In a system, MR denotes the set of all the reachable 

markings and can be divided into two subsets: the set 

of authorized states MA, and the set of forbidden states 

MF. The set of forbidden states is corresponding to two 

groups: a) the set of reachable states (MF
'
) which 

violates the specification or are deadlock states, b) The 

set of reachable states at which the occurrence of 

uncontrollable events leads to entering the system into 
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the states in MF
'
. The set of reachable states without 

forbidden states is the set of authorized states.  

In the set of forbidden states, there is a very important 

subset which is called the set of border forbidden states 

[14] and is defined as follows: 

 

Definition 1. MB is the set of border forbidden states 

and is defined as follows: 

 

MB ={Mi  MF |if  Mj  MA, Mj 
kt

  Mi  tkTc} 
(2) 

 
where Tc is the set of controllable transitions.   

The border forbidden states are the ones that forbidding 

them leads to forbidding all the forbidden states. So, 

for preventing the system from entering the forbidden 

states, it is sufficient to forbid the border forbidden 

states. 

 

2.1. From GMECs to Control Places 

GMECs are the constraints which restrict the weight 

sum of tokens in some places. Enforcing them on the 

system complies the specification and can avoid the 

forbidden states. For example suppose that places P1, 

P2 and P3 are corresponding to working states of 

machines 1, 2 and 3, respectively and the specification 

says that these three machines must not work at the 

same time. So the following GMEC complies the 

specification: 

m1+m2+m3 ≤ 2  

Enforcing GMECs on the system can be performed 

using control places [19]. In this case, instead of a 

GMEC, a control place should be added to the PN 

model of the system. 

Calculating the control places can be performed as 

follows [19]: 

Suppose that the set of GMECs is as the following 

form: 

 

L.MP ≤ b (3) 

 

where MP is the marking vector, L is a nc×n matrix, b is 

a nc×1 vector, nc is the number of GMECs and n is the 

number of places. In this method for each GMEC, a 

place should be connected to the model. So, for each 

GMEC, a row should be added to the incidence matrix 

of the model. These rows are shown by Wc and can be 

calculated as follows: 

 

Wc = -L.WP 

 

(4) 

where WP is the incidence matrix of the system before 

connecting the control places. This matrix (Wc) should 

be added to WP. So, the incidence matrix of the 

controlled model is as follows: 

 

P

c

W
W

W

 
  
 

 
 

(5) 

The initial marking of the control places can be 

calculated as the following form: 

 

Mc0=b-L.MP0 (6) 

 

where MP0 is the initial marking of the model before 

connecting the control places. So, the initial marking of 

the controlled model is: 

 

0

0

0

P

c

M
M

M

 
  
 

 
 

(7) 

 

Using these calculations, the control places related to 

the GMECs can be enforced on the system. 

When the number of GMECs is large, a large number 

of control places should be added to the PN model of 

the system. This concept complicates the controlled 

model. But, the number of GMECs can be reduced 

[20]. In the next section, our previous work [25] for 

obtaining a GMEC corresponding to all forbidden 

states is recalled. This is the base of our new method in 

this paper. 

 

3. One GMEC for Avoiding all Forbidden 

States 
In this section the goal is to recall our previous work 

[25] for solving the problem of forbidden states by 

obtaining one GMEC for preventing all forbidden 

states. This method is a special case and can be 

applicable on the system having small number of 

forbidden states. To recall this method, consider a 

generic constraint as follows: 

 

k1m1+k2m2+…+knmn≤x (8) 

 

where x and ki for i=1,…, n are integer constants, n is 

the number of places in PN model and mi is the number 

of tokens in place Pi. If we can obtain x and ki (for 

i=1,…, n) so that all the authorized states verify the 

constraint (8) and all the border forbidden states violate 

it, then the resultant constraint can be considered as a 

GMEC for preventing the system from entering all the 

forbidden states. 

Verifying this constraint (constraint (8)) by the 

authorized states is obtained when the term 

(k1m1+k2m2+…+knmn) is smaller than or equal to x for 

all the authorized states and violating it by the border 

forbidden states is obtained when the term 

(k1m1+k2m2+…+knmn) is greater than x for all the 

border forbidden states. So, for verifying this constraint 

by the authorized states, we substitute the markings of 

all the authorized states in the constraint (8) and obtain 

a set of inequalities. Then for violating the constraint 

(8) by the border forbidden states, we substitute the 

markings of all the border forbidden states in the 

constraint (8) and convert the smaller equal sign to 

greater sign to obtain another set of inequalities. Now, 

we consider the two sets of obtained inequalities and 
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solve them to obtain an answer (the answers are x and 

ki for  i=1, …, n). This is an ILP problem where the 

objective function is:   

Minimum (k1+k2+…+kn+x) in which x>0 and ki≥0 for 

i=1,…n.  

If this ILP problem has an answer, we should substitute 

the obtained x and ki in the constraint (8). So, the 

obtained constraint will be a GMEC for all the 

forbidden states. This concept is introduced in 

Algorithm 1. 

 

Algorithm 1 [25]. One GMEC for preventing all the 

forbidden states. 

Input: The set of authorized states MA and the set of 

border forbidden states MB. 

Output: One GMEC for preventing all the forbidden 

states.  

Suppose that MA={[z11 z12 … z1n], …, [zr1 zr2 … zrn]} is 

the set of authorized states and MB={[B11 B12 … B1n], 

…, [Bt1 Bt2 … Btn]} is the set of border forbidden 

states. Follow these steps to obtain a GMEC related to 

all the forbidden states: 

 

Step1. Consider a generic constraint as follows: 

 

k1m1+k2m2+…+knmn ≤ x (9) 

 

where n is the number of places, mi is the number of 

tokens in place Pi, and x and ki for i=1,2,…,n are 

integer constants. 

 

Step 2. Substitute the markings of all the authorized 

states in the constraint (9) and construct the 

inequalities as follows: 

 

[z11 z12 … z1n] → k1z11+k2z12+…+knz1n ≤ x (10-1) 

. 

. 

. 

. 

. 

. 

[zr1 zr2 … zrn] → k1zr1 + k2zr2 + … + knzrn ≤ 

x 

(10-r) 

where r is the number of authorized states. 

 

Step 3. Substitute the markings of all the border 

forbidden states in the constraint (9) and 

convert the smaller equal sign to greater 

sign as follows: 

 

[B11 B12 … B1n]→k1B11 + k2B12 + … + knB1n 

>x 

(11-1) 

. 

. 

. 

. 

. 

. 

[Bt1 Bt2 … Btn] → k1Bt1 + k2Bt2 + … + knBtn > 

x 

(11- t) 

 

where t is the number of border forbidden states. 
 

Step 4.  Solve the set of relations (10-1) to (10- r) 

and (11-1) to (11-t) which is an ILP problem 

and obtain the minimum values of x and ki 

for i=1,2,…,n. (in this problem the 

objective function is: 

minimum(k1+k2+…+kn+x) where x>0 and ki 

≥ 0 for i=1,2,…,n) 

 

Step 5. If step 4 has an answer, then substitute x and 

ki for i = 1,2,…,n in the constraint (9). The 

resultant constraint is a GMEC for all the 

forbidden states that enforcing it on the 

system leads to obtaining a maximally 

permissive behavior. 

                                                                                                   

 Now, an example is considered to show the impact 

of this method. 
 

Example 1 [25]. Consider the PN model in Fig. 1. This 

figure models a system composed of two machines M1 

and M2 and two robots. The start command of machine 

M1 (M2) is accomplished by firing of the controllable 

transition t1 (t2) and the end command of this machine 

is accomplished by firing of the uncontrollable 

transition t3 (t4). When each machine completes its 

task, one of the robots must convey the constructed 

piece. Each firing of the uncontrollable transition t5 

release one of the robots. In this model <P1t1P2t3P1> 

and <P3t2P4t4P3> are corresponding to the process 

model and <P5t3P6t5P5> and <P5t4P6t5P5> are 

corresponding to the specification model. 

 

 

 
Fig. 1. The PN model of the system in example 1. 

 
In the system with uncontrollable transitions there may 

be a problem when the model of process and the model 

of specification are synchronized in an uncontrollable 

transition. In this case the closed loop model may not 

complete its task correctly. The problem exists when 

the input places of the uncontrollable transition related 

to process are marked and the input places of this 

uncontrollable transition related to specification are 

unmarked.  

Due to the uncontrollability of the transition, the closed 

loop model cannot respect the firing rules of PN model. 

For instance, in this example consider the 

uncontrollable transition t4 in the closed loop model. 
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The input places of this transition are P4 and P5 at 

which P4 is related to the process and P5 is related to 

the specification. Suppose that the system is in the state 

[1 0 0 1 0 2].  

In this state according to the closed loop model, the 

transition t4 cannot fire but since in the process model, 

this transition is uncontrollable, the controller cannot 

disable the transition to verify the specification. 

Therefore, this state is a forbidden state. So, the 

controller must disable the controllable transitions in a 

special condition (before entering this state) to prevent 

the system from entering this state. This concept is the 

same for the states [0 1 0 1 1 1], [0 1 1 0 0 2], and [0 1 

0 1 0 2].  

So, these states are forbidden states. In the closed loop 

model when the system is in these states, the states 

after firing the uncontrollable transitions are unknown 

and are shown by . 

The reachability graph of this system is illustrated in 

Fig 2. In this figure, the forbidden states are depicted in 

grey color.  

 

 
Fig. 2. The reachability graph of the system in 

example 1. 

 
The detailed characterization of the markings 

corresponding to the various nodes of the graph of Fig. 

2 can be found in Table 1 related to the authorized 

states and in Table 2 related to the forbidden states (in 

Table 2, the states S8, S9 and S10 are border forbidden 

states). 

 
Tab. 1. The authorized states of the system in 

example 1. 

AUTHORIZED 

STATE 
P1 P2 P3 P4 P5 P6 

S0 1 0 1 0 2 0 

S1 1 0 0 1 2 0 

S2 1 0 1 0 1 1 

S3 1 0 0 1 1 1 

S4 1 0 1 0 0 2 

S5 0 1 1 0 2 0 

S6 0 1 0 1 2 0 

S7 0 1 1 0 1 1 

Tab. 2. The forbidden states of the system in 

example 1. 

FORBIDDEN 

STATE 
P1 P2 P3 P4 P5 P6 

S8 1 0 0 1 0 2 

S9 0 1 0 1 1 1 

S10 0 1 1 0 0 2 

S11 0 1 0 1 0 2 

 

In this example, the forbidden states are the ones that 

preventing them leads to verifying the specification. 

So, to prevent the system from entering these states, 

Algorithm 1 can be used to generate a GMEC. 

Therefore, according to Algorithm 1, a constraint 

should be considered as follows (step 1 of Algorithm 

1): 

 

k1m1+k2m2+…+k6m6 ≤ x (12) 

 

Substituting the markings of the authorized states in the 

constraint (12) leads to the set of inequalities as 

follows (step 2 of Algorithm 1): 

 

A1={k1+k3+2k5≤x, k1+k3+k5+k6≤x, k1+k3+2k6≤x, 

k1+k4+2k5≤x, k1+k4+k5+k6≤x, k1+k4+2k6≤x, 

k2+k3+2k5≤x, k2+k3+k5+k6≤x, k2+k3+2k6≤x, 

k2+k4+2k5≤x, k2+k4+2k6≤x} 

 

And substituting the border forbidden states (S8, S9 and 

S10) in the constraint (12) and converting the smaller 

equal sign to greater sign leads to the set of inequalities 

as follows (step 3 of Algorithm 1): 

 

A2={k1+k4+2k6>x, k2+k3+2k6>x, k2+k4+k5+k6>x} 

 

Now, the ILP problem composed of the inequalities in 

A1 and A2 and x > 0 and ki ≥ 0 for i=1,…, 6 where the 

objective function is minimum (k1+k2+…+k6+x), must 

be solved. The answer for this ILP problem is as 

follows: 

 

k1=0, k2=1, k3=1, k4=2, k5=0, k6=1, x=3 

 

So, the constraint (12) is obtained as the following 

form: 

 

m2+m3+2m4+m6≤3 (13) 

 

Enforcing this constraint on the system prevents it from 

entering the forbidden states. This constraint can be 

considered as a GMEC for all the forbidden states. The 

incidence matrix and the initial marking related to this 

control place are as follows: 

 

Wc=[-1 -1 0 0 1]           Mc0 = mPc = [2] (14) 

 

The controlled model of this system after enforcing the 

GMEC is depicted in Fig. 3. 
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Fig. 3. The controlled model of the system in 

example 1. 

 

In this figure, the control place and the related arcs are 

shown in gray color and dashed lines.  

But Algorithm 1 has two disadvantages as follows: 

- When the number of forbidden states is large, 

Algorithm 1 may not generate an answer. 

- When the number of places is large, the 

number of variables is large and solving the 

ILP problem may be difficult. 

To solve the first problem, we can classify the border 

forbidden states in some groups and consider each one 

of these groups in step 3 of algorithm 1, separately. 

Classification of the border forbidden states in some 

groups should be in the form that Algorithm 1 must 

generate an answer for each group and the number of 

groups must be the smallest one. In this case, 

Algorithm 1 can generate a GMEC for each group. But 

classification of the border forbidden states is a 

problem. 

In the next section a powerful method will be proposed 

which using the optimization algorithms classifies the 

border forbidden states in some groups and generates a 

GMEC for each group. Also, using this method, it is 

not necessary to solve the ILP problem and the 

constants (ki and x) will be obtained during the 

classification of the border forbidden states. So, impact 

of the second problem in above decreases.  

 
4. Obtaining Small Number of GMECs Using 

an Iterative Based Algorithm 
In this section the objective is to develop Algorithm 

1 for proposing an efficient method to obtain a small 

number of GMECs related to forbidden states. The 

main idea of the proposed method is classification of 

the inequalities related to border forbidden states (step 

3 of Algorithm 1) in some different groups. Also during 

this classification, by considering the inequalities 

related to the authorized states (step 2 of Algorithm 1), 

the constants (x and ki) can be obtained for each group 

without solving any ILP problem. This will be 

performed using an iterative based algorithm which 

tries to find the biggest group of the inequalities related 

to the forbidden states that can be satisfied by the 

constants (x and ki). 

The proposed method is described in Algorithm 2. 

Algorithm 2. Obtaining a small number of GMECs 

related to border forbidden states in bounded PNs. 

Input: The set of authorized states MA, and the set of 

border forbidden states MB. 

Output: The small number of GMECs for preventing 

the system from entering the forbidden states. 

Suppose that MA ={[z11 z12 … z1n], …,    [zr1 zr2 … zrn]} 

is the set of authorized states and MB={[B11 B12 … B1n], 

…, [Bt1 Bt2 … Btn]} is the set of border forbidden 

states. 

 

Step 1. Consider a generic constraint as follows: 

 

k1m1+k2m2+…+knmn ≤ x                                           (15) 

 

where n is the number of places and x and ki 

(for         i=1, …, n) are positive integers. 

 

Step 2. Substitute the markings of the authorized 

states in the constraint (15) and consider the 

obtained constraints as follows: 

 

,

1

. 1,2,...,
n

j i i

i

z k x j r


   
(16) 

 

These constraints are called SE constraints 

where r represents the number of the 

constraints (or the number of authorized 

states).                                                                                         

 

Step 3.Substitute the markings of the border 

forbidden states in the constraint (15) and 

convert the smaller equal sign to greater sign 

and consider the obtained constraints as the 

following form: 

 

,

1

. 1,2,...,
n

l i i

i

B k x l t


   
(17)

                                                                                                        
 

 

 

These constraints are called G constraints 

where t represents the number of the 

constraints. 

 
Step 4. Try to find a set of integer constants x and ki 

(for             i= 1, …, n) which: a) satisfy all 

of the SE constraints and b) satisfy the 

maximum number of the G constraints. After 

finding the set of constants x and ki, consider 

the satisfied G constraints as the biggest 

group among the given set of G constraints 

and substitute x and ki in the constraint (15). 

The obtained constraint is a GMEC for this 

group (the detailed process of this step for 

finding x and ki is discussed in section 4.1). 

 
Step 5. Save the biggest group found in step 4 with 

its GMEC, and then remove all the G 

constraints related to the biggest group from 

the set of G constraints. 
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Step 6. After removing the biggest group, if there is 

no ungrouped G constraint, the algorithm 

becomes terminated, otherwise continue the 

algorithm from step 4 considering the 

residual ungrouped G constraints as the new 

given G constraints. After termination of the 

process, there is an archive of the grouped G 

constraints with their respective GMECs. 

The obtained GMECs are the ones that 

enforcing them on the system leads to 

obtaining maximally permissive behavior. 

It should be noted that the number of G constraints 

related to group y (y is the number of iteration) is 

always greater than or equal to the number of these 

constraints related to group y+1.                          

 
4.1. Finding x and ki (i=1, …, n) for Satisfying all 

the SE Constraints and the Biggest Group of G 

Constraints 

To find the set of integer constants x and ki for 

satisfying all the SE constraints and the maximum 

number of the G constraints, the following 

optimization problem is considered: 

 

Minimize f(K)= x(K) + λ×UI(K) (18)   
 

1, 2,

1 1

, ,

1 1

max{ . , . ,....,

( )

. ,...., . }

n n

i i i i

i i

n n

j i i r i i

i i

z k z k

x K round

z k z k

 

 

 
 
 
 
 
 

 

 

 (19) 

 

where K = [k1, k2, …, ki, …, kn] is the set of decision 

variables of the optimization problem. f(K) is value of 

the objective function related to the given set K. UI(K) 

represents the number of unsatisfied G constraints 

considering the given set K. λ (λ ≥ 1) is a proportional 

factor and is used to increase the importance of 

minimizing UI(K) with respect to minimizing x(K) in 

the objective function. This means that the main aim of 

this optimization problem is to minimize the number of 

unsatisfied G constraints in order to satisfy the biggest 

group of G constraints (this leads to obtaining a small 

number of control places). x(K) is considered in the 

objective function since the small value for x is 

suitable.  

For satisfying all the SE constraints, we consider x as a 

dependent variable which can be found from (19) for 

the given set K. The operand “round (a)” rounds the 

value a toward the nearest positive integer value, and 

the operand “max (a, b, …, h, …, l)” select the 

maximum value from the values a, b, …, h, …, l. By 

choosing the exact value for λ and solving the above 

problem using an optimization solver, both the biggest 

group of G constraints and also the minimum value for 

x can be satisfied. For solving the proposed 

optimization problem, the Modified Adaptive Particle 

Swarm Optimization (MAPSO) algorithm presented in 

[26] is used (it is supposed that the reader is familiar 

with MAPSO algorithm). The MAPSO is based on the 

real value of particle swarm optimization (PSO) 

algorithm, and so, we round the proposed solutions of 

the algorithm during the optimization process to the 

nearest positive integer values. Solving the mentioned 

problem using this algorithm leads to an optimally 

better solution comparing with the conventional 

methods [2], [9]. 

To see the effectiveness of the new idea presented in 

this section, we apply it to some examples and compare 

the results with the conventional works. 

 
Example 2: A PN model similar to Example 1 is 

considered in Fig 4. In this figure, the transitions t1 and 

t2 are controllable and the transitions t3, t4, t5 and t6 are 

uncontrollable. The paths <P1t1P2t3P1> and 

<P3t2P4t4P3> are corresponding to process and the 

paths <P5t3P6t5P5>, <P5t4P6t5P5>, <P7t3P8t6P7> and 

<P7t4P8t6P7> are corresponding to specifications. In 

this example the set of markings of the authorized 

states and the border forbidden states can be found in 

Table 3 and 4 respectively. 

 

Tab. 3. The marking of the authorized states related to the system in example 2 
 P1 P2 P3 P4 P5 P6 P7 P8  P1 P2 P3 P4 P5 P6 P7 P8 

S0 1 0 1 0 2 0 2 0 S9 1 0 0 1 2 0 1 1 
S1 1 0 1 0 2 0 1 1 S10 1 0 0 1 2 0 2 0 

S2 1 0 1 0 2 0 0 2 S11 1 0 0 1 1 1 1 1 

S3 1 0 1 0 1 1 0 2 S12 1 0 0 1 1 1 2 0 

S4 1 0 1 0 1 1 1 1 S13 0 1 1 0 2 0 1 1 

S5 1 0 1 0 1 1 2 0 S14 0 1 1 0 2 0 2 0 

S6 1 0 1 0 0 2 0 2 S15 0 1 1 0 1 1 1 1 

S7 1 0 1 0 0 2 1 1 S16 0 1 1 0 1 1 2 0 
S8 1 0 1 0 0 2 2 0 S17 0 1 0 1 2 0 1 0 

 

Tab. 4. The marking of the border forbidden states related to the system in example 2 
 P1 P2 P3 P4 P5 P6 P7 P8  P1 P2 P3 P4 P5 P6 P7 P8 

S18 0 1 1 0 0 2 0 2 S25 1 0 0 1 1 1 0 2 

S19 0 1 0 1 1 1 1 1 S26 0 1 1 0 0 2 1 1 

S20 1 0 0 1 0 2 1 1 S27 0 1 1 0 2 0 0 2 

S21 0 1 1 0 1 1 0 2 S28 0 1 0 1 1 1 2 0 

S22 1 0 0 1 2 0 0 2 S29 0 1 1 0 0 2 2 0 

S23 0 1 0 1 2 0 1 1 S30 1 0 0 1 0 2 2 0 

S24 1 0 0 1 0 2 0 2 - - - - - - - - - 
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Fig. 4. The PN model in example 2. 
 

Algorithm 1 cannot generate any answer for this 

example. So, for preventing the system from entering 

the forbidden states, according to Algorithm 2, we 

consider a generic constraint as follows: 

 

k1m1+k2m2+…+k8m8 ≤ x (20) 

 

Substituting the markings of the authorized states in the 

constraint (20) leads to the set of SE constraints as 

follows: 

 
S1={k1+k3+2k5+2k8≤x, k1+k3+2k5+k7+k8≤x, k1+k3+2k5+2k7≤x, 

k1+k3+k5+k6+2k8≤x, k1+k3+k5+k6+k7+k8≤x,k1+k3+k5+k6+2k7≤x, 

k1+k3+2k6+2k8≤x, k1+k3+2k6+k7+k8≤x, k1+k3+2k6+2k7≤x, 

k1+k4+2k5+k7+k8≤x, k1+k4+2k5+2k7≤x, k1+k4+k5+k6+k7+k8≤x, 

k1+k4+k5+k6+2k7≤x, k2+k3+2k5+k7+k8≤x, k2+k3+2k5+2k7≤x, 

k2+k3+k5+k6+k7+k8≤x, k2+k3+k5+k6+2k7≤x, k2+k4+2k5+2k7≤x}. 

 
Substituting the markings of the border forbidden 

states in the constraint (20) and converting the smaller 

equal sign to greater sign leads to the set of G 

constraints as the following form: 

 
S2={k2+k3+2k6+2k8>x, k2+k4+k5+k6+k7+k8>x, 

k1+k4+2k6+k7+k8>x, k2+k3+k5+k6+2k8>x, k1+k4+2k5+2k8>x, 

k2+k4+2k5+k7+k8>x, k1+k4+2k6+2k8>x, k1+k4+k5+k6+2k8>x, 

k2+k3+2k6+k7+k8>x, k2+k3+2k5+2k8>x, k2+k4+k5+k6+2k7>x, 

k2+k3+2k6+2k7>x, k1+k4+2k6+2k7>x}. 

 
The objective function is: 

 
f(K)= x(K) + λ×UI(K) (21) 

 

And 
x(K) = round {max[(k1+k3+2k5+2k8), (k1+k3+2k5+k7+k8), 

(k1+k3+2k5+2k7), (k1+k3+k5+k6+2k8), (k1+k3+k5+k6+k7+k8), 

(k1+k3+k5+k6+2k7), (k1+k3+2k6+2k8), (k1+k3+2k6+k7+k8), 

(k1+k3+2k6+2k7), (k1+k4+2k5+k7+k8), (k1+k4+2k5+2k7), 

(k1+k4+k5+k6+k7+k8), (k1+k4+k5+k6+2k7), (k2+k3+2k5+k7+k8), 

(k2+k3+2k5+2k7), (k2+k3+k5+k6+k7+k8), (k2+k3+k5+k6+2k7), 

(k2+k4+2k5+2k7)]}, 
 

where K = [k1, k2, k3, k4, k5, k6, k7, k8]. By solving the 

above problem using MAPSO [26] and considering 

=2, the G constraints can be classified into two 

groups. So the first answer related to the first group is 

as follows: 
 

k1 = 0, k2 = 2, k3 = 0, k4 = 2, k5 = 1, k6 = 2, k7 = 1, k8 = 1 

and x = 7, 

By substituting this answer in the constraint (20), the 

first GMEC is: 

 

2m2+2m4+m5+2m6+m7+m8 ≤ 7 (22) 

 

The second answer related to the second group is: 

 
k1 = 0, k2 = 2, k3 = 0, k4 = 2, k5 = 1, k6 = 1, k7 = 0, k8 = 2 

and x = 6, 

 
By substituting this answer in the constraint (20), the 

second GMEC is obtained as the following form: 

 
2m2+2m4+m5+m6+2m8 ≤ 6 (23) 

 
The incidence matrix related to these two GMECs is as 

follows: 

 

2 2 1 1 1 0

2 2 0 0 0 2
cW

  
  

  

 

 
The initial marking of the two control places is: 

 

0

3

4
cM

 
  
 

 

 
Enforcing the GMECs (22) and (23) on the system 

leads to preventing the system from entering all the 

forbidden states. This example shows the capability of 

the new method for reducing the number of GMECs. 

Now in the following, we introduce other practical 

examples which are also used in the previous works, to 

highlight the differences between our work and the 

previous works. 

 
Example 3. Consider the resource allocation System in 

Fig. 5 which was presented in [5] and was used in [2]. 

In this system there are two processing part types. 

Initially it is assumed that there are no parts in the 

system. Places P1, P2 and P3 illustrate using the 

resources R1, R2 and R3 respectively by the first part 

type. Places P21, P22 and P23 represent using the 

resources R3, R2 and R1 respectively by the second part 

type. The number of concurrent activities that can take 

place for the two part types is 4 (m10=m20=4). Places 

P31, P32 and P33 represent the shared resources R1, R2 

and R3 respectively. In this model, all the transitions 

are controllable. 

In this example, the objective is to prevent the system 

from entering the deadlock states. The number of 

reachable states is 47 at which 42 ones are authorized 

and 5 ones are forbidden. The marking of the 

authorized states and the forbidden states (which are 

also border forbidden states) can be found in Table 5 

and 6 respectively. 
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Using Algorithm 2, the G constraints related to the 

forbidden states can be classified into two groups. The 

first answer related to the first group is as follows: 
 

k1 = 0, k2 = 2, k3 = 1, k4 = 0, k5 = 0, k6 = 1, k7 = 2, k8 = 

0, k9 = 0,    k10 = 0, k11 = 0 and x = 5. 

So, the first GMEC is: 

 

2m2+m3+m6+2m7 ≤ 5 (24) 
 

The second answer related to the second group is 

obtained as follows: 
 

k1 = 0, k2 = 1, k3 = 2, k4 = 0, k5 = 0, k6 = 1, k7 = 1, k8 = 

1, k9 = 1,    k10 = 1, k11 = 0 and x =5, 
 

Then the second GMEC is as the following form: 
 

m2+2m3+m6+m7+m8+m9+m10 ≤ 5 (25) 
 

The incidence matrix related to these two GMECs is: 
 

2 1 1 0 1 1 2 0

0 1 1 0 1 1 0 0
cW

   
  

  

  

(26) 

 

The initial marking related to the control places is: 
 

0

5

2
cM

 
  
 

  

(27) 

 

Tab. 5. The marking of the authorized states related to the system in example 3 

 P10 P11 P12 P13 P20 P21 P22 P23 P31 P32 P33 

S0 4 0 0 0 4 0 0 0 1 2 1 
S1 3 1 0 0 4 0 0 0 0 2 1 

S2 4 0 0 0 3 1 0 0 1 2 0 

S3 3 0 1 0 4 0 0 0 1 1 1 
S4 3 1 0 0 3 1 0 0 0 2 0 

S5 4 0 0 0 3 0 1 0 1 1 1 

S6 2 1 1 0 4 0 0 0 0 1 1 
S7 3 0 0 1 4 0 0 0 1 2 0 

S8 3 0 1 0 3 1 0 0 1 1 0 
S9 3 1 0 0 3 0 1 0 0 1 1 

S10 4 0 0 0 2 1 1 0 1 1 0 

S11 4 0 0 0 3 0 0 1 0 2 1 
S12 2 0 2 0 4 0 0 0 1 0 1 

S13 2 1 0 1 4 0 0 0 0 2 0 

S14 2 1 1 0 3 1 0 0 0 1 0 
S15 3 0 1 0 3 0 1 0 1 0 1 

S16 3 1 0 0 2 1 1 0 0 1 0 

S17 4 0 0 0 2 0 2 0 1 0 1 
S18 4 0 0 0 2 1 0 1 0 2 0 

S19 1 1 2 0 4 0 0 0 0 0 1 

S20 2 0 1 1 4 0 0 0 1 1 0 

S21 2 1 1 0 3 0 1 0 0 0 1 

S22 3 0 0 1 3 0 1 0 1 1 0 

S23 3 0 1 0 2 1 1 0 1 0 0 
S24 3 0 1 0 3 0 0 1 0 1 1 

S25 4 0 0 0 1 1 2 0 1 0 0 

S26 4 0 0 0 2 0 1 1 0 1 1 
S27 1 1 1 1 4 0 0 0 0 1 0 

S28 2 1 0 1 3 0 1 0 0 1 0 

S29 3 0 0 1 3 0 0 1 0 2 0 
S30 3 0 1 0 2 1 0 1 0 1 0 

S31 4 0 0 0 1 1 1 1 0 1 0 

S32 1 0 2 1 4 0 0 0 1 0 0 
S33 2 0 1 1 3 0 1 0 1 0 0 

S34 3 0 1 0 2 0 1 1 0 0 1 

S35 4 0 0 0 1 0 2 1 0 0 1 
S36 0 1 2 1 4 0 0 0 0 0 0 

S37 1 1 1 1 3 0 1 0 0 0 0 

S38 2 0 1 1 3 0 0 1 0 1 0 

S39 3 0 0 1 2 0 1 1 0 1 0 

S40 3 0 1 0 1 1 1 1 0 0 0 

S41 4 0 0 0 0 1 2 1 0 0 0 

 
Fig. 5. The resource allocation system in example 3. 

 



M. Zareiee, A. Dideban, A. A. Orouji   & H. R. Soleymanpour             Simplification of a Petri Net Controller in……                  68  

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  MMaarrcchh  22001133,,  VVooll..  2244,,  NNoo..  11  

Tab. 6. The marking of the forbidden states related to the system in example 3 

 P10 P11 P12 P13 P20 P21 P22 P23 P31 P32 P33 

S42 1 1 2 0 3 1 0 0 0 0 0 

S43 2 1 1 0 2 1 1 0 0 0 0 

S44 3 1 0 0 1 1 2 0 0 0 0 
S45 2 0 2 0 3 1 0 0 1 0 0 

S46 3 1 0 0 2 0 2 0 0 0 1 

 
By adding the two control places related to the GMECs 

(24) and (25), the system is prevented from entering 

the deadlock states and the 42 authorized states are 

obtained. Also, as it is obvious from (26) the number of 

arcs related to these two control places is 12 (this 

number is obtained by considering the weights 

associating with arcs). 

 

Example 4. A Similar example similar to Example 3 is 

considered in Fig. 6 which was presented in [28] and 

was used in [2].  

 

 
Fig. 6. The resource allocation system in example 4. 

 

In this example the objective is avoiding the deadlock 

states. The number of reachable states is 77 at which 

64 ones are authorized and 13 ones are forbidden.  

By using Algorithm 2 for preventing the system from 

entering the forbidden states, the G constraints are 

classified into two groups. So, the answer related to the 

first group is as follows: 
 

k1 = 1, k2 = 2, k3 = 2, k4 = 2, k5 = 2, k6 = 1, k7 = 1, k8 = 

0, k9 = 2, k10 = 2, k11 = 0, k12 = 0, k13 = 0, k14 = 0, k15 = 

0,     k16 = 0, and    x = 9.  
 

Therefore, the first GMEC is: 
 

m1+2m2+2m3+2m4+2m5+m6+m7+2m9+2m10 ≤ 9 (28) 
 

The answer related to the second group is as the 

following form: 

 
k1 = 0, k2 = 2, k3 = 1, k4 = 1, k5 = 1, k6 = 1, k7 = 1, k8 = 

0, k9 = 1, k10 = 2, k11 = 1, k12 = 1, k13 = 1, k14 = 0, k15 = 

1,    k16 = 1, and     x = 5.  

 

So, the second GMEC is: 

 
2m2+m3+m4+m5+m6+m7+m9+2m10+m11+m12+ 

m13+m15+m16 ≤ 5 

(29) 

 
The incidence matrix related to these two GMECs is as 

follows: 

 

1 0 0 1 0 1 0 0 0 0 2 0 2

1 1 0 0 1 0 0 0 0 1 0 1 0
cW

  
  

  

 
(30) 

 

The initial marking of these two control places is: 
 

0

4

1
cM

 
  
 

 (31) 

 

Enforcing the two GMECs (28) and (29) on the system 

using control places, prevents the system from entering 

all the forbidden states. Moreover, all the 64 authorized 

states will be reachable. In this controlled system the 

number of arcs related to the control places is 12.  

 
5. Discussion 

In this section we want to compare our method with 

the previous methods [2] and [9]. In this case, we 

compare the results after applying our method to 

examples 3 and 4 (which are used in a lot of papers) 

with the results after using the previous methods. So, 

Table 7 is constructed.  

In this Table, nbf is the number of border forbidden 

states, ncp is the number of control places, narc is the 

number of arcs related to the control places (this 

number is computed by considering the weights 

associating with arcs), nr is the number of reachability 

graph which must be computed and nILP is the number 

of ILP problems which must be solved. 

 

Tab. 7. Comparing our method with the previous methods 

 The proposed method The method in [2] The method in [9] 

 nbf 
 

NcP 
 

narc nr nILP nbf 
 

NcP 
 

narc nr nILP nbf 
 

NcP 

 

narc nr nILP 

Example 3 5 2 12 1 0 5 3 12 5 0 5 3 12 1 4 

Example 4 13 2 12 1 0 13 3 16 6 0 13 3 16 1 5 

Sum  18 4 24 2 0 18 6 28 11 0 18 6 28 2 9 
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In example 3, using the method in [28], 4 control places are 

generated for preventing the system from entering the 

deadlock states at which the number of their related 

arcs (narc) is 16. Using the methods in [2] and [9], one 

of these control places is recognized redundant and can 

be eliminated. So, by three residual control places a 

maximally permissive behavior is obtained at which 

the number of their related arcs (narc) is 12. However 

using the new method in this paper, two control places 

are directly obtained where the number of their related 

arcs is 12 and a maximally permissive behavior is 

obtained. Moreover, using our method, we compute the 

reachability graph one time and solving the ILP 

problem is not necessary. 

In example 4, by using the method in [28], 5 control 

places are computed for avoiding the deadlock states 

where the number of their related arcs is 31. By using 

the methods in [2] and [9], two control places are 

recognized redundant and can be eliminated. So, three 

remained control places generate maximally 

permissive behavior at which the number of their 

related arcs is 16.  

But using our method, by computing the one 

reachability graph and without solving any ILP 

problem, two control places are directly obtained that 

generate the maximally permissive behavior. Also, the 

number of related arcs is 12. 

As it is obvious from Table 7, after applying our 

method to all the examples, the number of control 

places and the number of arcs are smaller than or equal 

to these numbers after using the previous methods. 

Moreover, using our method the small number of 

control places are directly computed in one step but 

using the previous methods, the large number of 

control places must be calculated using some methods 

[17], [28] and other methods [2], [9] must eliminate the 

redundant control places among these places. So, using 

the previous methods, a simple controller is obtained in 

two steps. These concepts show that our method is 

simpler than the previous methods and generates better 

answers compared with them. However, the drawback 

of the new method is generating the reachability graph 

which is an exponential problem (Also the previous 

methods [2], [9] have this problem too). 

 

6. Conclusion 
In this paper a general method for solving the 

problem of the large number of control places has been 

proposed. This method tries to combine some 

constraints to obtain a constraint verifying all of them. 

So, using the optimization algorithms, the constraints 

which can generate an answer with each other 

constitute a group. Then, for each group a control place 

can be generated. The objective is to constitute the 

small number of groups for obtaining the small number 

of control places. Connecting the obtained control 

places to the system leads to a maximally permissive 

controller.  
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