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ABSTRACT 
This study applies two methods for the monitoring and control of autocorrelated processes based on 
time series modeling. The first method involves the simultaneous monitoring of common and 
assignable causes. This method includes the application of five steps of data gathering, normality test, 
autocorrelation test, model selection, and control chart selection on all non-stationary process 
observations. The second method is a novel method for the separate monitoring and control of 
common and assignable causes. In this method, the process was divided into parts with and without 
assignable causes. The first method was greatly non-stationary for not separating common and 
assignable causes. The application of this method also implied that common causes were hidden in the 
process. The novel method used for the separate monitoring of common and assignable causes could 
turn the process into a stationary one, leading to identifying, monitoring, and controlling common 
causes without any interference from the assignable causes. The results showed that, unlike the first 
method, the second method could be very sensitive to the common causes; it could, therefore, suitably 
monitor, identify, and control both assignable and common causes. The current work aimed to use 
control charts to monitor and control the bottomhole pressure during the drilling operation. 
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1. Introduction1 
One of the most dangerous phenomena in the oil 
industry is the oil and gas well blowout. Blowout 
occurs due to the inability to control the kick 
(sudden entering of fluid from the formation into 
the well) on time. One of the most recent oil well 
blowouts occurred in Rag-Sefid oil field in Iran, 
2017, leading to two deaths and the injury of 6 
other people. This oil well was finally controlled 
after 60 days, causing many injuries and severe 
financial and environmental damage [1].  
In conventional drilling, observing signs such as a 
change in the flow rate of the drilling fluid and an 
increase in the mud volume inside the pit can help 
predict the kick. These signs can warn about the 
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repeat of the kick in Managed Pressure Drilling 
(MPD) and Under Balanced Drilling (UBD). 
These signs have a time delay and, therefore, have 
a possibility of false alarm. Early Kick Detections 
(EKD) are the methods proposed for solving the 
aforementioned problems [1].  
Based on the second law of thermodynamics, all 
processes tend toward increased entropy. This 
entropy affects the process output through 
common and assignable causes. It is possible to 
control common causes using Engineering 
Process Control (EPC) methods such as feedback 
controllers. Assignable causes are identified and 
eliminated using Statistical Process Control (SPC) 
methods such as control charts. Control and 
compensation of assignable causes using EPC 
instead of eliminating them by using SPC leads to 
dynamic changes in the process [2,3].  
Among studies done in EPC for controlling the bit 
pressure, one can mention the study of Li et al. 
[1]. They used an L1 controller to monitor the 
process and control bit pressure in two cases with 
and without assignable causes. The assignable 
cause for this process was the drill pipe 
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connection, which led to wrongly measured bit 
pressure due to the incorrect operation of Mud 
Pulse Telemetry (MPT) when mud circulation in 
the well stopped. In this study, EPC became 
operational during assignable causes to 
compensate for any erroneous process output by 
altering adjustable inputs.  

Figure 1 shows a method used to choose between 
SPC and EPC for the process control based on the 
costs and related adjustment errors, sampling rate, 
and measurement errors. This figure shows that 
the application of SPC could be advisable in the 
case of measurement errors [4]. 

 

 
Fig. 1. Selection between SPC and EPC [4] 

 
In order to implement SPC, constant monitoring 
of the process output is recommended to identify 
and eliminate assignable causes to reach a suitable 
process control method without any dynamic 
changes. One of the tools used for the continuous 
monitoring of bit pressure is MPT and Wired 
Drill-Pipe Telemetry (WDT) installed in the bit 
[5]. In oil well drilling, common causes include 
random diversions with sources hidden in the 
drilling operation. Assignable causes include 
diversions due to a source outside the drilling 
operation. An example of a common cause is the 
kick, while drill pipe connection, mud loss, or 
damaged or wrong measurement sensors are 
examples of the assignable causes. Therefore, it is 
possible to identify and control assignable causes 
without any change in the process dynamics by 
the constant monitoring of the bit pressure during 
operation using tools such as MPT and proper 
controllers [5]. After identifying the causes of 
deviation, it is possible to use the chock valve 
installed on the well’s output path and on the 
weight and pressure of the drilling fluid to control 
the bit pressure and keep it as a set point. 

According to Figure 2, drilling mud enters the 
well through a mud pump and drill string; it is 
transported to the surface after going through the 
annulus and exits through the choke valve. Bit 
pressure has the highest hydrostatic pressure 
during the drilling operation, which is used to 
control the bit pressure.  
One of the conditions for using control charts is 
the independent nature of the measured data. 
Most chemical and industrial processes have 
autocorrelations between measured data, meaning 
that the application of control charts for process 
control leads to false alarms. One of the methods 
for reducing this autocorrelation and decreasing 
the rate of false alarms is the application of 
model-based methods. By identifying time series 
models of these processes, it is possible to 
calculate the residual value between the fitted 
model and the real data. Then, control charts are 
applied to these residual values to identify and 
eliminate assignable causes [6,7,8,9]. A brief 
history of studies regarding process monitoring 
control, especially in autocorrelated processes, is 
presented in the following section. 
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Fig. 2. The use of control charts for monitoring the bit pressure during the drilling operation [22] 

 
Alipour and Noorossana [10] proposed a new 
fuzzy EWMA method for controlling MIMO 
processes and compared their results to fuzzy 
Hoteling control charts. Their results showed the 
superiority of FEWMA method. Similarly, 
Kazamzadeh et al. [11] used an EWMA control 
chart with different sampling intervals to monitor 
the process average based on ARL and ATS 
measures. Abouei Ardekan et al. [12] applied 
control charts and maintenance programs to 
propose a hybrid model. When control charts 
have faster warnings than maintenance programs, 
Reaction Maintenance (RM) was used and 
MEWMA control charts and maintenance models 
were compared and evaluated based on ARL 
measures.  
Based on the previous literature, the application 
of control charts is proposed for monitoring bit 
pressure during drilling and identification of 
common and assignable causes. Therefore, this 
paper is divided into five sections. The first 
section provides an introduction to the bit 
pressure control and the use of control charts for 
autocorrelated processes. The second section 
presents simultaneous and separate methods for 
monitoring common and assignable causes in 
autocorrelated processes. The third section 
employs a case study of bit pressure during the 
drilling process to implement the methods 
presented in the previous section. The results are 
analyzed, discussed, and compared in the fourth 

section, and the reason for any deviations is 
investigated. Finally, the last section provides a 
conclusion and future suggestions for the 
monitoring and control of autocorrelated 
processes, especially bit pressure monitoring in 
oil well drilling.  
 

2. Procedure 
The necessary conditions for using control charts 
in a controlled process include independence and 
normality of observations with constant and 
known average (  ) and standard deviation ( ) 
values [13,14]. In these conditions, the process is 
shown using the following model, which is 
known as Shewhart model: 
 

ttx                              ,   ,.....2,1t      (1) 
 
In this equation, the observation at time t is 
shown by tx . t  is independent and follows a 
normal distribution with 0 , and   is called 
white noise.  
Under conditions of independent and normal 
observations, it is possible to use control charts 
for process monitoring and control. When there 
are changes in the values of   and , process 
changes into an out-of-control state and the 
method for process identification, monitoring, 
and control changes. A five-step approach is used 
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for proper process monitoring; it includes 
observations, normality test, autocorrelation test, 
model selection and control chart selection. The 
details of these steps are presented below [15].  
 
2.1. Observation 
Observation is the first step in this five-step 
approach. The proper selection of the 
measurement time period for sensors is important 
in process and chemical industries. Reducing 
sampling time increases autocorrelation and 
increases the time delay before the identification 
of common and assignable causes. On the other 
hand, it is important to ensure the accuracy of 
sensor measurements. In the case of measurement 
sensor faults, assignable causes are introduced 
into the process, thereby affecting measured data 
and creating an error in the identification of 
common causes in the process [2].  
 
2.2. Normality test 
The normality of the measured data is one of the 
conditions for using control charts. Borror et al. 
[16] used the ARL measure to evaluate Shewhart 
and EWMA charts for individual observations 
and observations with non-normal distribution. 
ARL measure is the average of the points before 
the observation of an alarm in the control chart. 
The important results of this work include: 
1. Significant reduction in ARL occurs in the 
control under the individual observation of 
Shewhart chart with the increased false alarms 
due to non-normal observations.  
2. In the case of the assumption of normal 
observations being wrong, it is possible to use 
EWMA chart with 05.0  or 1.0  and 
suitable control limits to achieve acceptable 
results.  
Similar observations were reported by Shiau and 
Chen [17] about autocorrelated processes, 
confirming the necessity of low   values for 
non-normal processes.  
 
2.3. Autocorrelation test 
One of the key assumptions of the use of control 
charts is that successive values of quality 
characteristics as they are observed through time 
are not correlated with each other. Modern 
manufacturing methods and sensor technologies 
often imply that quality data are serially 
correlated in time, and this can have a large 
impact on the performance of control charts [4]. 
Shiau and Hsu [17] investigated the effects of 
positive autocorrelation on the results of control 
charts, suggesting the use of EWMA charts with 

high  values for processes with low 
autocorrelation.  
 
2.4. Model selection 
One of the suitable methods for removing 
autocorrelation in the measured data is the 
model-based approach. In this approach, the time 
series model resulting from the autocorrelation 
between observations is determined and control 
chart is used for monitoring the residual between 
the real values ( tx ) and the fitted time series 

model ( tx̂ ). The residuals are calculated using

ttt xxe ˆ , with no significant autocorrelation. 
Autoregressive (AR), Moving average (MA), 
their mixture or Autoregressive Moving Average 
(ARMA), and Autoregressive Integrated Moving 
Average (ARIMA) time series models are 
calculated using Box-Jenkins method [18]. In 
their work, Box et al. analyzed stationary and 
non-stationary time series based on probability 
theory and used the results to determine an 
optimum model for autocorrelated processes. 
Stationary models have a constant average and 
variance over time, while variance and average 
change with time in the non-stationary processes. 
AR, MA, and ARMA are the examples of 
stationary models, while ARIMA is the example 
of a non-stationary model. It is possible to use 
Difference Stationary Process (DSP) or Trend 
Stationary Process (TSP) to turn non-stationary 
models into stationary ones. The general format 
of time series ARIMA (p, d, q) models is as 
follows: 
 

tqt
d

p BxB ).(.).(                                (2) 
 
In this equation: 

 p
pp BBBB   ...1)( 2

21  is the 

autoregressive polynomial of the thp  order, 
 q

qq BBBB   ...1)( 2
21  is the 

moving averages polynomial of the thq  order,
 represents backward, d is the difference order, 
t  represents time, B is the backshift operator 

)(. 1 tt xxB , p ,...,, 21 - refer to the 
parameters of the autoregressive model, 

q ,...,, 21 - are the parameters of moving 

averages model, and t is called white noise. 
It is possible to use Autocorrelation Function 
(ACF) to determine the suitable P value for MA 
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and use Partial Autocorrelation Function (PCF) to 
determine the value of q for AR in time series.  
Another method for determining p and q orders is 
the use of Augmented Dickey Fuller (ADF) test 
with the null hypothesis of existing unit roots and 
Schwarz's Bayesian information criterion (SBIC), 
Akaike's information criterion (AIC), and 
Hannan-Quinn Information Criterion (HQC). 
This method creates a table based on p and q 
values and fills them with each of the SBIC, AIC, 
or HQC criteria. Then, the suitable model is 
selected based on the lowest value of this table.  
The d order is determined based on the unit root 
test. For example, by using ADF test and 
confirming the null hypothesis at the determined 
confidence level, the process is non-stationary. 
By implementing the DSP process, differentiating 
order (d=1), and repeating the ADF test, it is 
possible to achieve a stationary process. If a 
stationary process is not achieved, it is possible to 
increase the d value until a stationary process is 
reached.  
 
2.5. Control chart selection 
After investigating the normalization and 
autocorrelation of the measured data, a suitable 
control chart is selected to monitor and control 
the common and assignable causes of the process. 
Selecting a suitable control chart is carried out 

based on criteria such as normalization of 
observations, types of causes, observation types, 
the measured values, and the observed 
autocorrelation level.  
Control charts are divided into two types: with 
and without memory. Charts without memory 
simply use the data from the current time for 
process monitoring. Shewhart charts are an 
example of these charts. Charts with memory use 
current and part data for process monitoring and 
include examples such as EWMA and CUSUM 
charts [2].  
Shewhart [19] first proposed Shewhart charts for 
process monitoring. These control charts are 
suitable for monitoring assignable causes; 
however, they lack the necessary sensitivity for 
monitoring common causes. This led to the 
introduction of CUSUM charts by Page [20] and 
EWMA charts by Roberts [21] to monitor 
common causes. EWMA and CUSUM charts had 
comparable performances; however, in this work, 
EWMA charts were used for process monitoring 
due to their simplicity.  
Table 1 shows the statistics and control limits of 
Shewhart and EWMA charts. In this table,   is 
the target mean,   is the standard deviation, L is 
the width control limit factor,   is the smoothing 
parameter, and iZ  is the EWMA statistics. 

 
Tab. 1. Statistics and control limits of the control charts. 
Control Chart Statistics Control Limits 

Shewhart iX   30   

EWMA 1)1(  iii ZxZ    iL 2
0 )1(1

2





 




 
 
Figure 3 shows the five-step process of process identification, monitoring and control based on the 
explanations given in this section. 
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Fig. 3. Five steps of process identification, monitoring, and control. 

 
2.6. New methodology  
During autocorrelated observations, we should 
ensure that this autocorrelation is an intrinsic part 
of the process itself, not the result of the assigned 
causes. This requires a full understanding of the 
process under study. This type of autocorrelation 
takes place in chemical and industrial processes 
characterized by enough process knowledge to 
determine that assigned variations can help 
reduce autocorrelation [2].  
By identifying the time period of assigned 
process variations, it is possible to divide the 
process into two parts: with and without assigned 
variations. Then, the five steps of process 
identification, monitoring, and control can be 
separately applied to both parts. Unlike the 
method that simultaneously monitors common 
and assigned causes, this method significantly 
reduces process autocorrelation, changes the 
process from non-stationary to a stationary 
process, and can identify, monitor, and control 
common causes without any effects from the 
assigned causes. By implementing the separate 
monitoring of common and assigned causes, it is 
possible to select control charts suitable for the 
variations of each part and significantly reduce 
the number of false alarms.  
In the next section, both simultaneous and 
separate identification, monitoring, and control of 
common and assigned causes based on the five-
step approach are implemented in a case study of 
bit pressure during drilling operation, and their 
performance is compared based on the reduction 

of autocorrelation and the increased stationary 
nature of the process.  
 

3. Results 
In order to evaluate the trends observed in the 
current study, the data presented in the paper by 
Nikoofard et al. [5] on Drill Pipe Connection in a 
UBD process were used. These data were 
recorded using a WDT during the drilling of an 
oil well from fluid pressure inside the bit at 1-
minute time intervals. In this process, in order to 
add the drill pipe to the drill string, the line 
between the mud pump and the well was 
disconnected during drilling, and the pressure 
sensor did not function ideally. This means that 
bit pressure has a measurement error that creates 
an assignable cause. On the other hand, in the 
UBD process, in order to increase the drilling 
speed, the weight of the mud injected into the 
well was light enough to keep mud column 
pressure near the formation pressure. As a result, 
this process had a higher probability of kick than 
overbalanced drilling, especially at deeper 
depths. This means that monitoring bit pressure 
during a process would become more important 
with an increase in depth. In this case study, the 
simultaneous and separate monitoring of the 
assigned (drill pipe connection) and common 
causes (kick) was carried out at a depth of

m102530 . The drill pipe connection process 
was implemented in two parts at times 

min501hrt   and min353hrt   for 15 
minutes each time. The total length of the process 
was 5 hours and 30 minutes.  
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In this wok, the identification, monitoring, and 
control of the process were carried out using two 
approaches mentioned in the previous section. In 
the first approach, assignable and common causes 
were simultaneously monitored, and all data were 
measured at 1-minute time intervals (330 total 
observations) together (a). In the second 
approach, i.e., the separate monitoring of 
assignable and common causes, the process was 
divided into five parts and each part was 
monitored separately. These five parts included 
(b) before the first drill pipe connection (first 95 
minutes), (c) during the first drill pipe connection 
(15 minutes), (d) after the first drill pipe 
connection and before the second drill pipe 
connection (105 minutes), (e) during the second 
drill pipe connection (15 minutes), and (f) after 
the second drill pipe connection (100 minutes).  
The five steps of Figure 3 were applied to each 
part of each approach. In the normality test step, 
Anderson-Darling Normality test at a confidence 
interval of 95% was used. When normality test 
showed that the process was normal, in order to 
increase the confidence about data normality, 
histogram graphs were created. In the 
autocorrelation test step, ACF and PCF were 
drawn at different intervals. In the model 
selection step, first, the stationary or non-
stationary nature of the autocorrelated process 
was determined using the Unit Root Tests at a 
95% confidence interval (table 2). Afterwards, a 
suitable Shewhart time series was selected based 
on the previous steps. This step used the Box-
Jenkins method proposed by Box et al. [18] to 
determine the suitable time series. In the control 
chart selection step, Shewhart control chart was 
used for normal processes without 
autocorrelation, while EWMA control charts with 

05.0  were used for the monitoring and 
control of non-normal and autocorrelated 
processes. On the other hand, in the case of 
autocorrelation with one gap in the normal 
processes, EWMA charts with 2.0  were 
used. All steps, methods, and parts of the above 
procedure were carried out using Minitab 16, 
Statgraphics 18 statistical applications, and 
Eviews 10 econometrics application, with the 
inputs presented in Tables 2 to 3 and Figures 4 to 
9. The analysis results are discussed in the next 
section.  
 

4. Discussion 
In the previous section, identification, 
monitoring, and control of the bit pressure during 
the drilling operation were carried out using two 
approaches. Figure 4 shows the normality test, 

autocorrelation test, and the control chart of the 
observations before model fitting and on 
residuals after model fitting for the first method 
that attempted to identify, monitor, and control 
the process using all observations and residuals 
without separating common and assignable 
causes. The results of unit root test for this 
method confirmed that this process was non-
stationary. The results of ADF and PP tests by 
this method are presented in the first and second 
lines of Table 2, showing the results before and 
after differentiation, respectively. As can be seen, 
the process reached stationary conditions after 
one step of differentiation; therefore, based on 
Box-Jenkins method, ARIMA (1,1,0) time series 
was selected for this process. The fitted model is 
provided in Table 3 (a). Figures 4(a) and 4(b) 
show non-normal observations and residuals 
before and after fitting the time series model. 
Figure 4(c) shows ACF for different lags 
depicting the serial autocorrelation before fitting 
the time series model. This function determines 
the number of q lags for MA series. Figure 4(d) 
shows the elimination of this autocorrelation in 
residuals after fitting the time series model. 
Figure 4(e) shows PCF for different lags and 
autocorrelation in observations before model 
fitting. This function determines the number of p 
lags of AR time series. Figure 4(f) shows the 
elimination of this autocorrelation in residuals 
after fitting the time series model. Figure 4(g) 
shows the EWMA control chart for observations 
before fitting the time series. Due to the high 
autocorrelation between observations, the number 
of out-of-control points was high, showing an 
unacceptably high number of false alarms. To 
solve this problem, EWMA control chart was 
applied to residual values after fitting the time 
series, as shown in Figure 4(h). Due to the non-
normality of observations and residuals, based on 
the guideline shown in Figure 3, the value of

05.0  was selected. According to Figure 
4(h), 12 observations in the first pipe connection 
and 4 observations in the second pipe connection 
were out of control, showing false alarms for the 
assignable causes. This method was unable to 
monitor common causes, because assignable 
causes affected common causes. In addition, they 
could hide them during process monitoring. As a 
result, kick occurrence, which is a common 
cause, could not be monitored and identified. The 
presence of assignable causes also meant that the 
process was significantly non-stationary, adding 
one step to the five steps required for 
identification, monitoring, and control. This 
added step was required to make the process 
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stationary and, as a result, could increase the 
monitoring time.  
The above-mentioned method was used for the 
simultaneous monitoring of common and 
assignable causes. In order to fix the problems 
with this approach, a second approach for the 
separate monitoring of common and assignable 
causes was used. By identifying the time of 
assignable causes (during drill pipe connection), 
it was possible to divide the process into parts 
with and without assignable causes. For example, 
this process could be divided into five parts 
where the first, third, and fifth parts would lack 
assignable causes, as shown in Figures 5, 7, and 
9, respectively. The second and fourth parts 
include assignable causes that are shown in 
Figures 6 and 8, respectively.  
The results of the unit root test for the first, third, 
and fifth parts of the process proved the 
stationary nature of the process in these parts. 
The results of ADF and PP tests for these three 
parts are presented in the third, fourth, and fifth 
lines of Table 2. Based on Box-Jenkins method, 
ARIMA (1,0,0), ARIMA (1,0,1), and ARIMA 
(1,0,1) time series were selected for the first, 
third, and fifth parts of the process, respectively. 
The fitted models are provided in Tables 3(b), 
3(d), and 3(f). Figures 5(a), 7(a), and 9(a) also 
show the non-normality of observations before 
fitting the time series, while Figures 5(b), 7(b), 
and 9(b) represent the non-normality of residuals 
after fitting the time series. Figures 5(c), 7(c), and 
9(c) represent ACF in different lags, showing 
serial autocorrelation before fitting the time series 
model. Figures 5(d), 7(d) and 9(d) show the 
elimination of this autocorrelation after fitting the 
time series models. Figures 5(e), 7(e), and 9(e) 
also show PCF at different lags, as well as the 
autocorrelation of observations before fitting the 
time series model. Figures 5(f), 7(f), and 9(f) 
display the elimination of these autocorrelations 
in residuals after fitting the time series model. 
Figures 5(g), 7(g), and 9(g), on the other hand, 
show the EWMA control charts on observations 
before fitting the time series. Due to the high 
autocorrelation, the number of uncontrolled 
points was high, showing unacceptably high false 
alarms in these charts. In order to fix this 
problem, EWMA control charts were applied to 
the residual values after fitting the time series, as 
shown in Figures 5(h), 7(h), and 9(h). Due to the 
non-normality of observations and residuals, 
based on the guideline shown in Figure 3, the 
value of 05.0  was selected. In the control 
chart shown in Figure 7(h), which belongs to the 
first part of the process, only the last two 

observations were below the lower control limit. 
In this section, the mud pump was turned off in 
preparation for the pipe connection operation. 
After turning off the mud pump, the opening of 
the chock valve changed from 10% to 6% so that 
a lower amount of fluid left the well. In other 
words, turning off the mud pump decreased bit 
pressure, and closing the chock valve increased 
the bit pressure again. These two uncontrolled 
points were due to the time delay before the 
pressure reached an optimum value of 235bar. 
Any delay to take actions in order to preserve bit 
pressure in the optimal range increased the 
probability of kick due to the UBD operational 
conditions. In the control chart shown in Figure 
7(h) for the third part, after the first pipe 
connection procedure, a total of 4 points were out 
of control. The reason for these points was to add 
the drill pipe to the drill string that increased the 
well volume and, therefore, decreased the 
pressure of the mud column. By turning on the 
mud pump and renewing the fluid flow into the 
well, this empty space was gradually filled, 
leading to an increasing trend at the bit pressure. 
This increase continued until the 131st minute 
(the 21st observation in this part), leading to one 
uncontrolled observation. After reconnecting the 
mud pump, the chock valve returned to its 
original opening of 10%. Due to the higher time 
delay in the chock valve, as compared to mud 
pump, this increasing trend changed into a 
decreasing one after the 131st minute until the 
time of the second pipe connection. The 
evaluation of the chart shown in Figure 9(h) for 
the fifth part of the process after the second pipe 
connection was similar to the previous ones. The 
only difference was that, in this part, the number 
of out-of-control points was higher than that in 
the third part. This resulted from an increase in 
the well’s depth and volume; therefore, a greater 
reduction in the bit pressure after the second pipe 
connection occurred, as compared to the first pipe 
connection. It is worth noting that the chock 
valve changed from 10% to 5% in the second 
pipe connection due to the greater bit pressure 
drop in the second pipe connection as a result of 
the increased well depth and well volume.  
The second and fourth parts of the process 
showed the first and second pipe connections, 
respectively. Figures 6(a) and 8(a) show the non-
normality of observations in the second and 
fourth parts, according to Anderson-Darling 
Normality test, at a confidence interval of 95%. 
In order to ensure the normality of observations, 
the histograms of these two parts are shown in 
Figures 6(b) and 8(b). After ensuring the 
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normality of observations, the autocorrelation of 
observations, according to ACF, is shown in 
Figures 6(c) and 8(c), while autocorrelation 
according to PCF is shown in 6(d) and 8(d). The 
process had negligible autocorrelation in the first 
lag of both parts. As a result, due to the normal 
nature of observations and their negligible 
autocorrelation, the Shewhart control chart was 
applied to the observations in Figures 6(h) and 
8(h). Compared to Shewhart charts, EWMA 
control charts with  = 0.05, 0.1, and 0.2 are also 
shown in Figures 6(e), 8(e), 6(f), 8(f), 6(g), and 
8(g), respectively. The evaluation of EWMA 
charts with different   values showed that with 
an increase in   values, the number of out-of-
control points, out of upper control limits, and out 
of lower control limits became more similar to 
the Shewhart chart. It is worth mentioning that 
the out of control nature of the process in these 
two parts was due to the assignable causes as a 
result of the pipe connection.  
 

5. Conclusion 
In this work, for the first time, two different 
approaches including simultaneous and separate 
monitoring of common and assignable causes 
using control charts based on modeling were used 
to control the bit pressure during the drilling 
operation. Both approaches included five steps of 
observation, normality test, autocorrelation test, 
model selection, and control chart selection.  
In the first approach, which is known as the 
simultaneous monitoring of common and 
assignable causes, without removing the 
assignable causes due to the drill pipe connection, 
process monitoring and control were carried out. 
In this approach, the presence of assignable 
causes masked common causes, making it 
impossible to control common causes. The 
presence of assignable causes in the 
autocorrelated process also made it non-
stationary, which lengthened the monitoring and 
control process. One of the assumptions on the 
use of control charts is the stationary process. As 
a result, changing a non-stationary process to a 
stationary one would require procedures such as 
differentiation or trend elimination.  
In order to fix the above problems, the second 
approach monitored the assignable and common 
causes separately. In this novel approach, an 
autocorrelated, non-stationary process was 
divided into parts with and without assignable 
causes before using five steps of process 
identification, monitoring, and control. The 

application of this approach in the bit pressure 
control during the drilling operation could 
significantly reduce the autocorrelation between 
observations, turning the process from a non-
stationary process to a stationary one. This new 
approach would require process knowledge to 
determine the timing of assignable causes. In 
monitoring the bit pressure during the drilling 
operation, the process was divided into five parts 
including (1) before the first drill pipe 
connection, (2) during the first drill pipe 
connection, (3) after the first drill pipe connection 
and before the second drill pipe connection, (4) 
during the second drill pipe connection, and (5) 
after the second drill pipe connection. 
The first, third, and fifth parts of the process were 
non-normal and lacked autocorrelation between 
residuals; therefore, EWMA control charts with 

05.0  were used. The opening of the chock 
valve was determined based on the increasing or 
decreasing trend of these charts and out-of-
control points before and after pipe connection in 
order to adjust bit pressure and prevent kick 
occurrence. The charts drawn for the first, third, 
and fifth parts showed that pipe connection at 
deeper depths led to a greater increase in chart’s 
slope and the number of out-of-control 
observations before and after pipe connection. 
This was due to the enhanced well volume with 
an increase in the drilling depth, leading to an 
increase in the volume of drilling mud necessary 
to compensate for the poor pipe connection. This 
increased pressure drop could be compensated by 
closing the chock valve.  
In the second and fourth parts, due to the normal 
operation and negligible autocorrelation, 
Shewhart control charts were used. In these parts, 
EWMA charts with different values of   were 
also used and compared with the results of 
Shewhart charts. Due to the negligible 
autocorrelation of the process, EWMA charts 
with higher   values could be more similar to 
Shewhart charts. This second approach could be, 
therefore, useful to identify common and 
assignable causes and prevent kick during the 
Under Balanced Drilling (UBD) operation.  
The results showed that, unlike the first approach, 
the second approach could be very sensitive to 
common causes; it could, in fact, identify, 
monitor, and control both assignable and 
common causes. Future studies can, therefore, 
apply EPC methods along with SPC for the 
control and compensation of common causes in 
this process. 
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Tab. 2. Unit root tests for selecting the suitable models 

Unit Root 
Tests 

Null Hypothesis: P has a unit root (Not Stationary) / 95% Confidence Interval 
ADF PP 
SIBC AIC HQ  
t-Statistic Prob t-Statistic Prob t-Statistic Prob t-Statistic Prob 

P -2.089863 0.2490 -3.32712 0.145 -2.258090 0.1865 -2.370564 0.1510 
D(P) -11.66116 0 -5.666884 0 -8.684742 0 -12.27158 0 
P , Part A -5.264040 0.0175 -5.618565 0.0160 -5.264040 0.0175 -5.309950 0.0118 
P , Part C -3.152451 0.0259 -3.152451 0.0259 -3.152451 0.0259 -3.100751 0.0244

9 
P , Part E -7.164552 0 -7.012696 0 -7.012696 0 -7.232953 0 

 
Tab. 3. Model selection step of the five-step procedure for process identification, monitoring, and 

control. 
(a) First approach 
(b) Second approach, the first part before the first drill pipe connection 
(c) Second approach, the second part during the first drill pipe connection 
(d) Second approach, the third part after the first drill pipe connection and before the second drill pipe 

connection 
(e) Second approach, the fourth part during the second drill pipe connection 
(f) Second approach, the fifth part after the second drill pipe connection 

Time Series Model / ARIMA(1,1,0) 
ttt PADPD   )(92630.4103154456362-0.0191512)( 1  

P 

Time Duration : 
330 min 

Time Series Model / ARIMA(1,0,0) 
ttt PAPA  154090.99086776582235.012779  

P , Part A 

Time Duration : 
95 min 

Shewhart Model 
ttPB  547.232  

First Drill Pipe Connection 

P , Part B 

Time Duration : 
15 min 

Time Series Model  / ARIMA(1,0,1) 
tt1 53230.3438119712160.99060735228225.590582   tt PCPC

 

P , Part C 

Time Duration : 
105 min 

Shewhart Model 
ttPD  039.282  

Second Drill Pipe Connection 

P , Part D 
Time Duration : 
15 min 

Time Series Model  / ARIMA(1,0,1) 
1-tt1 41310.3385139502120.9895929832231.036075   tt PEPE

 

P , Part E 

Time Duration : 
100 min 
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Fig. 4. Normality test, Autocorrelation test, and Control chart selection steps of the five-step 
procedure for process identification, monitoring, and control for the first approach 

(a) Normality test on the measured observations (before model selection) 
(b) Normality test on residuals (after model selection) 
(c) Autocorrelation Test (ACF) on the measured observations (before model selection) 
(d) Autocorrelation Test (ACF) on residuals (after model selection) 
(e) Autocorrelation Test (PCF) on the measured observations (before model selection) 
(f) Autocorrelation Test (PCF) on residuals (after model selection) 
(g) Control chart for the measured observations (before model selection) 
(h) Control chart for residuals (after model selection) 
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Fig. 5. Normality test, Autocorrelation test, and Control chart selection steps of the five-step 
procedure for process identification, monitoring, and control for the second approach, the first part 

(a) Normality test on the measured observations (before model selection) 
(b) Normality test on residuals (after model selection) 
(c) Autocorrelation Test (ACF) on the measured observations (before model selection) 
(d) Autocorrelation Test (ACF) on residuals (after model selection) 
(e) Autocorrelation Test (PCF) on the measured observations (before model selection) 
(f) Autocorrelation Test (PCF) on residuals (after model selection) 
(g) Control chart for the  measured observations (before model selection) 
(h) Control chart for residuals (after model selection) 
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Fig. 6. Normality test, Autocorrelation test, and Control chart selection steps of the five-step 
procedure for process identification, monitoring, and control for the second approach, the second 

part 
(a) Normality test on the measured observations (probability plot) 
(b) Normality test on the  measured observations (histogram) 
(c) Autocorrelation test (ACF) on the measured observations 
(d) Autocorrelation test (PCF) on the  measured observations 
(e) Control chart for the  measured observations (EWMA, 05.0 ) 
(f) Control chart for  the measured observations (EWMA, 1.0 ) 
(g) Control chart for the measured observations (EWMA, 2.0 ) 
(h) Control chart for the  measured observations (Shewhart) 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                            13 / 18

https://www.iust.ac.ir/ijieen/article-1-827-en.html


156 A Novel Methodology for Monitoring and Control of Non-Stationary Processes Using Model-
based Control Charts (Case Study: bottomhole Pressure during Drilling Operations) 

 

International Journal of Industrial Engineering & Production Research, March 2020, Vol. 31, No. 1 

3210-1-2-3-4-5-6

99.9

99

95
90

80
70
60
50
40
30
20

10

5

1

0.1

P,PartC,ARIMA(1,0,1),Residual

Pe
rc

en
t

Mean 0.1139
StDev 0.7959
N 105
AD 5.338
P-Value <0.005

Probability Plot of P,PartC,ARIMA(1,0,1),Residual
Normal - 95% CI

 

b 

260250240230220210200

99.9

99

95
90

80
70
60
50
40
30
20

10

5

1

0.1

P,PartC

Pe
rc

en
t

Mean 231.5
StDev 6.902
N 105
AD 14.808
P-Value <0.005

Probability Plot of P,PartC
Normal - 95% CI

 

a 

2624222018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
ut

oc
or

re
la

ti
on

Autocorrelation Function for P,PartC,ARIMA(1,0,1),Residual
(with 5% significance limits for the autocorrelations)

 

d 

2624222018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
ut

oc
or

re
la

ti
on

Autocorrelation Function for P,PartC
(with 5% significance limits for the autocorrelations)

 

c 

2624222018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

Pa
rt

ia
l A

ut
o

co
rr

el
at

io
n

Partial Autocorrelation Function for P,PartC,ARIMA(1,0,1),Residual
(with 5% significance limits for the partial autocorrelations)

 

f 

2624222018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

Pa
rt

ia
l A

ut
o

co
rr

e
la

ti
on

Partial Autocorrelation Function for P,PartC
(with 5% significance limits for the partial autocorrelations)

 

e 

1019181716151413121111

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

Time

EW
M

A

__
X=0.1139

UCL=0.4062

LCL=-0.1783

EWMA Chart of P,PartC,ARIMA(1,0,1),Residual,Lambda=0.05

 

h 

1019181716151413121111

235.0

232.5

230.0

227.5

225.0

Time

EW
M

A

__
X=231.53

UCL=231.74

LCL=231.32

EWMA Chart of P,PartC,Lambda=0.05

 

g 

Fig. 7. Normality test, Autocorrelation test, and Control chart selection steps of the five-step 
procedure for process identification, monitoring, and control for the second approach, the third part 

(a) Normality test on the measured observations (before model selection) 
(b) Normality test on residuals (after model selection) 
(c) Autocorrelation Test (ACF) on the measured observations (before model selection) 
(d) Autocorrelation Test (ACF) on residuals (after model selection) 
(e) Autocorrelation Test (PCF) on the measured observations (before model selection) 
(f) Autocorrelation Test (PCF) on residuals (after model selection) 
(g) Control chart for the  measured observations (before model selection) 
(h) Control chart for residuals (after model selection) 
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Fig. 8. Normality test, autocorrelation test, and control chart selection steps of the five-step procedure 
for process identification, monitoring, and control for the second approach, the fourth part 

(a) Normality test on the measured observations (probability plot) 
(b) Normality test on the  measured observations (histogram) 
(c) Autocorrelation test (ACF) on the  measured observations 
(d) Autocorrelation test (PCF) on the measured observations 
(e) Control chart for the  measured observations (EWMA, 05.0 ) 
(f) Control chart for the measured observations (EWMA, 1.0 ) 
(g) Control chart for the measured observations (EWMA, 2.0 ) 
(h) Control chart for the  measured observations (Shewhart) 
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Fig. 9. Normality test, Autocorrelation test, and Control chart selection steps of the five-step 
procedure for process identification, monitoring, and control for the second approach, the fifth part 

(a) Normality test on the measured observations (before model selection) 
(b) Normality test on residuals (after model selection) 
(c) Autocorrelation Test (ACF) on the measured observations (before model selection) 
(d) Autocorrelation Test (ACF) on residuals (after model selection) 
(e) Autocorrelation Test (PCF) on the measured observations (before model selection) 
(f) Autocorrelation Test (PCF) on residuals (after model selection) 
(g) Control chart for the measured observations (before model selection) 
(h) Control chart for residuals (after model selection) 
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