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ABSTRACT 
In the study of system reliability and survival analysis, the reliability function, the mean residual 
lifetime, and the hazard rate are important measures factors. Besides, they provide helpful tools to 
analyze the maintenance policies and burn-in of a system. This study considers a network containing n 
components with two states, up and down, showing whether an element is connected to other parts or 
not. It is supposed here that the system is subject to shocks that may cause component failure in which 
the number of crashes at each shock follows a truncated binomial distribution, and the process of 
shocks is associated with nonhomogeneous Poisson. The reliability function, the mean residual 
lifetime, and the hazard rate of this network are investigated under the shock model by experimenting 
them on a real system. 
 
KEYWORDS Network reliability, Shock model, T-Signature, Mean residual lifetime, Hazard rate. 
 

1. Introduction1 
Networks are one of the most important systems 
in industrial and software engineering. A network 
can be modelled by the triplet ܰ = (ܸ, ,ܧ ܶ) , 
where set ܸ stands for the nodes, and set ܧ shows 
the links in the form of the relation between 
nodes, ܶ	 ⊆  .called vital-links ܧ is a subset of ܧ
Let |ܸ| = ݉  and |ܧ| = ݊ . In the following, the 
components of a network are subject to failure 
when the links are subject to failure and the 
nodes are assumed reliable. It is obvious that the 
failure of components may change the state of the 
network. 
In Computer Networks, the nodes represent a 
variety of devices such as computers, servers, 
switches, routers, and etc. The edges are the 
information transmission lines containing 
telecommunication fibres, railways, copper 
cables, and wireless channels connecting these 
computers, and the shock may occur as a result of 
a sequence of attacks. Network security is one of 
the most important parts of this field, such that 
network engineers and administrators consider 
many measures and much money for keeping the 
networks safe. According to the CISCO annual 
security report [1], there are about 28 million 
network connections evaluated on the Internet 
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every day in 2014-2015, and 50,000 network 
intrusions are detected every day. Attacks and 
network threats proliferate daily; therefore, 
modelling the network flows can be a useful 
method for better network analysis and 
visualization. 
Over the past decade, several methods have been 
introduced to evaluate the reliability of a 
network, some of which are [2, 5, 6, 9, 10, 11, 
12]; however, they often describe the reliability 
of a network as a function based on a defined 
signature such that the number of failure nodes at 
every shock is at most one; however, there are 
later models such as the model of Zarezadeh et al. 
(2016) designed over a kind of signature's 
notation called t-signature in which more than 
one node may break at every shock. 
The present study considers a network through 
the former two-stated shock model to describe a 
counting-random-process network attacks model, 
and each can cause more than one node to break. 
Under this assumption, a new approach to the 
reliability function, the mean residual lifetime, 
and the hazard rate of the network is presented. 
The shock-model network can be extended for 
every network with every dataset; hence, our 
results are used to analyze the survival of a 
network simulation, dealing with shocks and, 
especially, attacks [7]. 
The aim of this paper is to obtain the reliability 
function, the mean residual lifetime, and the 
hazard rate of the network by using the t-
signature method. In Section 1, it is supposed that 
each shock follows a truncated binomial 
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distribution and that the process of shocks is a 
nonhomogeneous Poisson process. In Section 2, 
the simulation of a real network with hybrid 
topology and a full attack scenario applied to the 
network are described. Finally, some analytical 
properties of the network are determined. 
 

2. Network Reliability under Shock 
Models 

Let the edges of a network have statistically 
independent and identically distributed (i.i.d.) 
lifetimes 	 ଵܺ, ܺଶ,… , ܺ௡  with a common 
continuous distribution function ܨ,  and the 
network has a lifetime ܶ, which is a function of 
ܺଵ, ܺଶ,… , ܺ௡ . Prior to presenting the main 
results, some basic concepts that are useful in our 
derivation are briefly given. 
 
Definition 1: (Samaniego, (1985)) Assume 
that     π	 = 	 ൫e୧భ, e୧మ ,… , e୧೙൯   is a   permutation  of the 
network edge number. Suppose that all edges in 
this permutation are connected. This study moves 
along the permutation from left to right and turn 
the state of each edge from connected to 
disconnected state. Under the assumption that all 
permutations are equally the same, the signature 
vector of the network is defined as   s 	 =
 	 (sଵ , sଶ 	, …	, s୬)  , where 
 
௜ݏ =	

݊௜
݊!
		,										݅ = 1,… , ݊, 

 
and   n୧  is the number of permutations in which the 
failure of the ݅௧௛	 edge causes a change from the 
state of the network to a disconnected state. In 
other words,  ݏ௜    is  the  probability that the lifetime 
of the network equals to the  ݅ ௧௛		ordered lifetimes 
among   ܺ ௜  's, i.e.,   s୧ 	 = 	Pr[T	 = 	 X୧:௡]  , where 
	X୧:௡  is  the  ݅ ௧௛-order statistic among the random 
variables (r.v.s) ܺଵ, ܺଶ,… , ܺ௡. 
 
Definition 2:  (Zarezadeh et al. (2016)) Assume 
that  M	 ∈ 	 {1, 2, . . . , n}    is a  discrete r.v. as the 
minimum number of edges whose breaks cause 
the network to disconnect . Under the assumption 
that all the ways of the order of edge breaks are 
equally the same, the t-signature vector of the 
network is defined as  s த 	= ଵఛݏ) 	  , ଶఛݏ , . . .   ௡ఛ)  , whereݏ
 
௜ఛݏ =	

݊௜
݊∗
		,										݅ = 1,… , ݊,	 

 
and ݊௜ is the number of ways of the order of edge 
breaks in which M = i  , and ݊∗  is the number of 
ways that the edges of the network break under 
the assumption that ties may occur as follows: 

݊∗ =෍෍൬
݆
݇
൰ (−1)௞(݆ − ݇)௡

௝

௞ୀ଴

.
௡

௝ୀଵ

 

 
There is an efficient algorithm for computation 
݊∗	and signature vector [3]. 
Note that the signature vector and the t-signature 
vector defined in Definitions 1 and 2 depend on 
the structure of the network and do not depend on 
the real random mechanism of the edge failures. 
 The reliability function of the network lifetime, 
ܶ, at time ݐ	 > 	0 is as follows: 
 
R୘(t) = Pr[ܶ > [ݐ

=෍ݏ௜ Pr[	ܺ௜:௡

௡

௜ୀଵ
> .[ݐ 																																													(1) 

 
In the following theorem, which is introduced by 
Gertsbakh and Shpungin [2], we obtain the 
reliability of the network under the assumption 
that all orders of breaks are equally the same. 
 
Theorem 1: Assume that the component failures 
appear according to a renewal process {ܰ(ݐ), ݐ ≥
0}  defined as a sequence of i.i.d. non-negative 
random variables ଵܻ , ଶܻ, …	 . The random variable 
(ݐ)ܰ  shows the number of links that are 
disconnected on the network at the interval [0,  ,[ݐ
and the breaks in process {ܰ(ݐ), ݐ ≥ 0}  appear at 
the instants  
 

ܵ௞ =෍ ௜ܻ

௞

௜ୀଵ
, ݇ = 1, 2, …	. 

 
Let all orders of breaks be equally the same, and 
the reliability function of the network lifetime 
can be represented as follows, and this is valid 
under any counting process: 
 
R୘(t) = Pr[ܶ > [ݐ

=෍	൥ ෍ ௞ݏ
௡

௞ୀ௜ାଵ

൩ 	Pr	[ܰ(ݐ) = ݅]
௡

௜ୀଵ

, ݐ

> 0. 
 
Consider a network with lifetime  T  subject to 
shocks (attacks), where shocks appear according 
to a counting process, ܰ(ݐ) ∈ {1	,2	,… , ݊} 
denotes the number of links that disconnects at 
time ݐ  and the shocks appear according to a 
counting process by {	(ݐ)ߦ, ݐ > 0}  with random 
time instants ߴଵ , ,ଶߴ …  and random variable ܭ௜ , 
for ݅ = 1,… , ݊ , denoting the number of 
components that fail at the ݅௧௛ attack and ܭ଴ ≔ 0. 
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Zarezadeh et al. (2016) demonstrated that the 
reliability function could be written as follows: 
 
(ݐ)்ܴ = Pr[ܶ > [ݐ

= Pr[ܰ(ݐ)
<  (2)																																								,[ܯ

 
where	ܰ(ݐ) =	∑ ௜ܭ

	క(௧)
௜ୀ଴ , and we have 

 

Pr[ܰ(ݐ) ≤ [ݔ = ෍ܪ௞(ݔ) Pr[(ݐ)ߦ = ݇] ,
ାஶ

௞ୀ଴

	 

where  
 

(ݔ)௞ܪ = Pr ቎෍ܭ௜

క(௧)

௜ୀ଴

≤ (ݐ)ߦቮݔ = ݇቏. 

 
From (2) and the last result, we have 
 
R୘(t) = Pr[ܶ > [ݐ = Pr[ܰ(ݐ) < 	[ܯ

												= ෍Pr[ܯ = ݅] Pr[ܰ(ݐ) ≤ ݅ − 1]
௡

௜ୀଵ

	

												= ෍ݏ௜ఛ Pr[ܰ(ݐ)
௡

௜ୀଵ
≤ ݅ − 1].																																						(3) 

 
Let ܵ௝̅ఛ = 	∑ ௜ఛ௡ݏ

௜ୀ௝ାଵ  and from (3), the following 
function is obtained as follows: 
 

R୘(t) = Pr[ܶ > [ݐ = ෍ݏ௜ఛ Pr[ܰ(ݐ) ≤ ݅ − 1]
௡

௜ୀଵ

	

																			= ෍ݏ௜ఛ ෍ܪ௞(݅ − 1) Pr[(ݐ)ߦ = ݇]	
ାஶ

௞ୀ଴

௡

௜ୀଵ

	

																			= ෍ߚ௞,௡ 	Pr	[
ାஶ

௞ୀ଴

(ݐ)ߦ

= ݇],																																									(4) 
 
where, for 	݇ = 0, 1,…, we have 
 

௞,௡ߚ =෍ݏ௜ఛܪ௞(݅ − 1)
௡

௜ୀଵ

	

			= ෍ ܵ௝̅ఛ	Pr	[෍ܭ௜

௞

௜ୀ଴

௡ିଵ

௝ୀ଴
= ݆] .																																												(5) 

 
In order to study the aging behavior of a system, 
the mean residual lifetime (MRL) is a helpful 
tool. The MRL represents the expected value of 

the remaining lifetime ܶ −  under the condition ݐ
that the system is working. Let ܶ	be a continuous 
random variable denoting the lifetime of the 
system with distribution function (ݐ)ܨ. The MRL 
of ܶ is defined as follows: 
 

(ݐ)ܯ = ܶ)ܧ − ܶ|ݐ ≥ (ݐ =
∫ ݑ݀(ݑ)்ܴ
ାஶ
௧

(ݐ)்ܴ
,	 

 
provided that ்ܴ(ݐ) > 0.	 
The following theorem gives a form for the mean 
lifetime of a network system.  
 
Theorem 2: Let ܶ  be a continuous random 
variable denoting the lifetime of a network with 
distribution function (ݐ)ܨ . The MRL of a 
network system is as follows: 
 
(ݐ)ܯ		

=
∑ ௞,௡ߚ 	∫ Pr	[ାஶ

௧
ାஶ
௞ୀ଴ (ݑ)ߦ = ݑ݀	[݇

∑ [ାஶ	Pr	௝,௡ߚ
௝ୀ଴ (ݐ)ߦ = ݆]

.																			(6) 

 
Proof:  
(ݐ)ܯ		 = ܶ)ܧ − ܶ|ݐ ≥  (ݐ

											=
∫ ݑ݀(ݑ)்ܴ
ାஶ
௧

(ݐ)்ܴ
	

											=
∫ ∑ [ାஶ	Pr	௞,௡ߚ

௞ୀ଴ (ݑ)ߦ = ାஶݑ݀	[݇
௧

∑ ௝,௡ߚ 	Pr	[ାஶ
௝ୀ଴ (ݐ)ߦ = ݆]

	

											

=
∑ ௞,௡ߚ 	∫ Pr	[ାஶ

௧
ାஶ
௞ୀ଴ (ݑ)ߦ = ݑ݀	[݇

∑ [ାஶ	Pr	௝,௡ߚ
௝ୀ଴ (ݐ)ߦ = ݆]

.																												 

 
In the sequel, it is assumed that the number of 
component failures at each shock follows a 
truncated binomial distribution. Let a shock 
cause, at least, a component to fail with 
probability p and the components fail 
independent of each other. Assuming that ܭଵ 
represents the number of failed components at the 
first shock. It is obvious that K1 has truncated 
binomial distribution. Suppose that the number of 
failed components in the 	݅௧௛  shock, ܭ௜  , ݅ > 1, 
depends only on ܭଵ, ଶܭ 	, … , ௜ିଵܭ . In other words, 
we have 

Pr[ܭଵ = ݇	] = ቀ
݊
݇
ቁ
௡ି௞ݍ௞݌

1 − ௡ݍ
	 , ݇

= 1	,… , ݊,																																(7) 
 
For ݅	 ≥ 2,	 
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Pr[ܭ௜ = ݇	|෍ܭ௝

௜ିଵ

௝ୀଵ

= [ݓ = ቀ
݊ − ݓ
݇

ቁ	
௡ି௪ି௞ݍ௞݌

1 − ௡ି௪ݍ
,

݇ = 1,… , ݊ − ݓ			,ݓ
< ݊,																																											(8) 

 
where ݍ = 1 −  .݌
 
Lemma 1: By using Assumptions (7) and (8), we 
have  
 

Pr	[෍ܭ௜ = ݆]
௞

௜ୀଵ

= ൬
݊
݆
൰
൫1 − ௞(௡ି௝)ݍ௞൯௝ݍ

1 − ௡ݍ
,

݆ = 1,… , ݊,			݇
= 1, 2, ….																																			(9) 

 
Proof: For ݇ = 1	, the result is true by Relation 
(7). Let the result be true for ݇ = ݉, that is,  
 

Pr	[෍ܭ௜ = ݆]
௠

௜ୀଵ

= ൬
݊
݆
൰
(1 − ௠(௡ି௝)ݍ௠)௝ݍ

1 − ௡ݍ
. 

 
Then, for 	݇ = ݉ + 1 , we get 
 

Pr ൥෍ ௜ܭ = ݆
௠ାଵ

௜ୀଵ

൩

= ෍Pr ൥ܭ௠ାଵ = ݆ − ݇อ෍ܭ௜
௠

௜ୀଵ

= ݇൩
௝

௞ୀ଴

	

∗ 	Pr ൥෍ܭ௜
௠

௜ୀଵ

= ݇	൩	

= ෍൬
݊ − ݇
݆ − ݇

൰݌௝ି௞ݍ௡ି௝
௝

௞ୀ଴

Pr ൥෍ܭ௜
௠

௜ୀଵ

= ݇	൩	

= ෍൬
݊ − ݇
݆ − ݇

൰݌௝ି௞ݍ௡ି௝
௝

௞ୀ଴

൫௡௞൯(1 − ௠(௡ି௞)ݍ௠)௞ݍ

1 − ௡ݍ
							

= ൬
݊
݆
൰෍݌௝ି௞ݍ௡ି௝

௝

௞ୀ଴

௝!
௞!(௝ି௞)!

ቀ݌௞൫∑ ௜௠ିଵݍ
௜ୀଵ ൯௞ቁ ௠(௡ି௞)ݍ

1 − ௡ݍ
	

= ൬
݊
݆
൰ ௡(௠ାଵ)ି௝ݍ௝݌ ෍

൫௝௞൯൫∑ ௜௠ିଵݍ
௜ୀଵ ⁄௠ݍ ൯௞

1 − ௡ݍ

௝

௞ୀ଴

	

= ൬
݊
݆
൰
௡(௠ାଵ)ି௝ݍ௝݌ 	ቀ∑ ௤೔೘

೔సబ
௤೘

ቁ
௝

1 − ௡ݍ
	

= ൬
݊
݆
൰
(1 − (௡ି௝)(௠ାଵ)ݍ௠ାଵ)௝ݍ

1 − ௡ݍ
. 

 

Theorem 3: Let ܶ denote the lifetime of a 
network with a continuous distribution (ݐ)ܨ.	The 
reliability of a network at time ݐ is as follows: 
 

	ܲ(ܶ > (ݐ = ෍ߚ௞,௡∗ 	Pr	[
ାஶ

௞ୀ଴

(ݐ)ߦ = ݇],					

 
where ߚ଴,௡∗ = 1 and, for ݇ = 1, 2,…,	we have 
 

∗௞,௡ߚ 	 = ෍ ܵ௝̅
ఛ 	Pr	[෍ ௜ܹ = ݆]

௞

௜ୀ଴

௡ିଵ

௝ୀ଴

	

	= ෍ܵ௝̅ఛ 	൬
݊
݆
൰
൫1 − ௞(௡ି௝)ݍ௞൯௝ݍ

1 − ௡ݍ

௡ିଵ

௝ୀ଴

	

= ෍ݏ௜ఛ
௡

௜ୀଵ

෍൬
݊
݆
൰
൫1 − ௞(௡ି௝)ݍ௞൯௝ݍ

1 − ௡ݍ
	

௜ିଵ

௝ୀ଴

	

									

= ෍ ෍ ܵ௝̅ఛ ൬
݊
݆
൰ ൬

݆
݊ − ݉

൰
(−1)௝ି௡ା௠ ௞௠ݍ	

1 − ௡ݍ
	

௡ିଵ

௝ୀ௡ି௠

௡

௠ୀଵ

. 

 
3. Realistic Network 

Networks are categorized by their topologies. 
There are many types of topologies with different 
reliability functions [3]. According to the reports 
of the Information Security Centre of Excellence 
(ISCX) at University of New Brunswick, it can 
be supposed that a realistic network contains the 
main structure and many substructures. For 
testing the results of the previous chapter, the 
intrusion detection dataset of this network is used 
[7]. 
The ISCX network consists of 21 interconnected 
Windows workstations. The systems' operators 
chosen as a different set of known attacks against 
the network would be possible. Indeed, the 
workstations of this network consist 17 Windows 
XP SP1, 2 Windows XP SP2, 1 Windows XP 
SP3, and 1 Windows 7.  
To simplify the problem, we categorize the 
network into 4 sub-networks that connect with 
the main part by links. These sub-networks are 
called ܩଵ, ,ଶܩ ,ଷܩ  ହ, providesܩ ,ସ. The fifth linkܩ
the means to conduct non-disruptive monitoring 
and maintenance of workstations and servers. 
Since the traffic is not captured, tasks such as 
loading applications and tuning service 
parameters are made possible. 
The network has 3 servers, main server, 
secondary server, and additional servers. The 
main server is responsible for delivering the 
network’s website, providing email services, and 
acting as the internal resolver considered to be 
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Ubuntu 10.04, and the secondary server is 
responsible for internal ASP.NET applications 
considered to be Windows Server 2003. The 
additional servers consist of servers that provide 
web, email, DNS, and Network Address 
Translation (NAT) services.  
One of the advantages of this network is Internet 
access. The NAT server creates an access to the 
internet for the entire network, and the NAT 
server is Linux based with Ubuntu 10.04.  
The topology of this network is a star with 5 
substructures, which could have different 
topologies; however, all components of every 
substructure enjoy the same effective features; 
therefore, we can assume that every attack occurs 
in the whole of a sub-network with equal 
probability 
The attack scenario is required to employ a 
description language that contains various 
attacks. In [7], for describing an attack scenario, 
ADeLe [4] was used; the full attack scenario was 
composed of 5 steps: 
1. Information gathering and reconnaissance 
(passive and active), 
2. Vulnerability identification and scanning, 
3. Gaining access and compromising a system, 
4. Maintaining access and creating backdoors, 
5. Covering tracks. 
The network analysis started at 00:01:06 on 
Friday June 11th and ran continuously for an 
exact duration of 7 days, ending on June 18th. See 
[13] to get the details and attack distribution. 
 
 
ISCX Network Reliability  
 

 
Fig. 1. The network graph 

 
Assume that the network can be connected so 
long as the servers are working and, at least, one 
of them is connected; consequently, this is a 
ܰ = (ܸ, ,ܧ ܶ)  where 	|ܸ| = 11 |ܧ| , = 10 , and 
|ܶ| = 3. Let ଵܺ, ܺଶ,… , ܺଵ଴ be the links' lifetimes 
that depend on attacks. As shown in Figure 1, the 

main devices (switch, servers) are shown by solid 
circles, and the ܺ଺, ܺ଻, ଼ܺ are the main links.  
Since each attack is followed by the attack 
scenario, every attack can break at most one link; 
therefore, signature vector in Definition 1 can be 
computed and Relation (1) is used to determine 
reliability function with this kind of scenario, 
where ݊௜, ݅ = 1,… , 10 is 
 

Tab. 1. ISCX signature details 
݅ ݊௜ ݏ௜ 

1 0 0 
2 0 0 
3 30240 0.008 
4 90720 0.025 
5 181440 0.050 
6 302400 0.083 
7 453600 0.125 
8 635040 0.175 
9 846720 0.233 
10 1088640 0.300 

 

From Table 1, 
ݏ = (0	, 0	, 0.008	, 0.025, 0.050, 0.083, 0.125,	 
0.175, 0.233, 0.3); therefore, 
 

(ݐ)்ܴ = Pr[ܶ > [ݐ =෍ݏ௜ Pr[	ܺ௜:ଵ଴ > [ݐ .
ଵ଴

௜ୀଵ

 

 
In the real world, there are known attacks that can 
break more than one type of components. Hence, 
we can assume a new scenario in which every 
attack may result from the break of more than 
one component at the same time. ݊∗ is the 
number of ways that the links disconnect in the 
network and ݊௜  is the number of ways of the 
order of link breaks when ܯ = ݅. Hence, we have 

 

Tab. 2. ISCX t-signature details 
݅ ݊௜ ݏ௜ఛ  

1 94,586 0.001 
2 1,229,611 0.012 
3 4,632,258 0.045 
4 10,226,724 0.100 
5 17,304,504 0.169 
6 23,097,480 0.225 
7 22,947,120 0.224 
8 15,457,680 0.151 
9 6,168,960 0.060 
10 1,088,640 0.010 

In addition, t-signature vector is ݏఛ =
(0.001, 0.012	, 0.045, 0.1, 	
	0.169, 0.225, 0.224, 0.151, 0.06, 0.01) where 
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݊∗ =෍݊௜

ଵ଴

௜ୀଵ

= 102247563. 

 
For	݇ = 0, 1,…, we get 
 

∗௞,ଵ଴ߚ =෍ܵ௝̅
ఛ 	Pr	[෍ܭ௜ = ݆]

௞

௜ୀଵ

ଽ

௝ୀ଴

. 

 
where ܵ̅ఛ is 
 

Tab. 3. ࡿഥ࣎ for ISCX 
݅ 0 1 2 3 4 
ܵ௜̅
ఛ  1.0 0.999 0.987 0.942 0.842 
݅ 5 6 7 8 9 
ܵ௜̅ఛ  0.672 0.446 0.2221 0.071 0.011 

 
Thus, we can write 
 

∗௞,ଵ଴ߚ =
௞ݍ	0.1 + ଶ௞ݍ2.23 + ଷ௞ݍ4.93

1 − ଵ଴ݍ
	

										+	
ସ௞ݍ12.33− + ହ௞ݍ1.15 + ଺௞ݍ13.28

1 − ଵ଴ݍ
	

+	
଻௞ݍ11.90− + ௞଼ݍ3.81 − ଽ௞ݍ0.21 − ଵ଴௞ݍ0.07

1 − ଵ଴ݍ
. 

 
In the following, it is assumed that the shocks 
appear as a NHPP. A counting process is named a 
NHPP if the reliability function of the ݇௧௛ event 
is  
 

Pr[(ݐ)ߦ = ݇] =
௞(ݐߣ)

݇!
݁ିఒ௧ . 

From Representation (4), the reliability function 
can be computed as follows: 

R୘(t) = Pr[ܶ > [ݐ = ෍ߚ௞,ଵ଴∗ 	Pr	[
ାஶ

௞ୀ଴

(ݐ)ߦ = ݇]	

= ෍ߚ௞,ଵ଴∗ ௞(ݐߣ)

݇!
. ݁ିఒ௧

ାஶ

௞ୀ଴

. 

 
Various analysis types of the reliability function 
of the SICX network are given below in Figures 
2, 3, and 4.  
 

 
Fig. 2. The reliability function for p = 

0.9 and λ=0.0271. 
 

 
Fig. 3. The reliability function for p = 

0.5 and λ=0.0271. 
 

 
Fig. 4. The reliability function for p = 

0.1 and λ=0.0271. 
 
By (6), the MRL of a network can be described 
as follows: 
(ݐ)ܯ													 = ܶ)ܧ − ܶ|ݐ ≥  (ݐ
																								

=
∑ ∗௞,ଵ଴ߚ 	∫ ାஶ]	ݎܲ

௧
ାஶ
௞ୀ଴ (ݑ)ߦ = ݑ݀	[݇

∑ ௝,ଵ଴ߚ
∗ ାஶ]	ݎܲ	

௝ୀ଴ (ݐ)ߦ = ݆]
	

=
∑ ∗௞,ଵ଴ߚ 	∫ (ఒ௨)ೖ

௞!
. ݁ିఒ௨ାஶ

௧
ାஶ
௞ୀ଴ ݑ݀	

∑ ∗௝,ଵ଴ߚ (ఒ௧)ೕ

௝!
. ݁ିఒ௧ 	ାஶ

௝ୀ଴

	

=
∑ ∗௞,ଵ଴ߚ ∑ ௧ೖషೞ		ఒ(ೖషೞ)షభ

(௞ି௦)!
௞
௦ୀ଴ 	ାஶ

௞ୀ଴

∑ ∗௝,ଵ଴ߚ (ఒ௧)ೕ

௝!
	ାஶ

௝ୀ଴

. 

 
Further, analysis of the network's MRL for some 
values of ݌  during time ݐ  outputs is shown in 
Figures 5, 6, and 7. 
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Fig. 5. The network's MRL for p = 

0.9(blue), p = 0.88(red), p = 0.86(yellow), p 
= 0.84(pink), p = 0.82(azure), p = 

0.8(green), and λ=0.0271. 
 

 
Fig. 6. The network's MRL for p = 0.5 

and λ=0.0271. 
 

 
Fig. 7. The network's MRL for p = 0.1 

and λ=0.0271. 
 
Remark: The hazard rate of a continuous 
random variable ܶ  with density function ݂  and 
distribution function ܨ with ݂ is defined by 
 

ℎ(ݐ) = lim
ఋ௧→଴

Pr[ܶ > ݐ + |	ݐߜ ܶ ≥ [ݐ
ݐߜ

=
(ݐ)݂
(ݐ)ܴ

	. 

 
The hazard rate of the network can be written as 
follows: 
 
ℎ்(ݐ)

= ෍݌௞,௡(ݐ)ℎݏ௞(ݐ),
ାஶ

௞ୀଵ

																																																(10) 

 
where ℎ௞(ݐ) =

(୔୰[ణೖ	வ௧])ᇲ	
୔୰	[ణೖ	வ௧]

 is the hazard rate of 
, ܾ௞,௡	௞ߴ = ௞ିଵ,௡ߚ −   and	௞,௡ߚ

(ݐ)௞,௡݌ =
ܾ௞,௡ 	Pr	[ߴ௞ > [ݐ

∑ ௝ܾ,௡ 	Pr	[ ௝ߴ > ାஶ[ݐ
௝ୀଵ

		. 

 
Hence, from (10), we obtain  
 

ℎ்(ݐ) = ෍ ,(ݐ)ℎ௞(ݐ)௞,ଵ଴݌
ାஶ

௞ୀଵ

 

 
and  
 

(ݐ)௞,ଵ଴݌ =
ܾ௞,ଵ଴ Pr[ߴ௞ > [ݐ

∑ ௝ܾ,ଵ଴ Prൣ ௝ߴ > ൧ାஶݐ
௝ୀଵ

. 
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