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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

The problem of lot sizing, sequencing and scheduling multiple 
products in flow line production systems has been studied by several 
authors. Almost all of the researches in this area assumed that setup 
times and costs are sequence �independent even though sequence 
dependent setups are common in practice. In this paper we present a 
new mixed integer non linear program (MINLP) and a heuristic method 
to solve the problem in sequence dependent case. Furthermore, a 
genetic algorithm has been developed which applies this constructive 
heuristic to generate initial population. These two proposed solution 
methods are compared on randomly generated problems. Computational 
results show a clear superiority of our proposed GA for majority of the 
test problems. 
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11..  IInnttrroodduuccttiioonn  

 Smooth and cost-efficient running of a production 
line often depends on selecting appropriate lot-sizes 
and production schedules. One of the most difficult lot-
sizing problems which is known to be NP-hard is 
ELSP [6]. We encounter with this problem when one 
machine is used to meet deterministic and stationary 
demand of several products over an infinite horizon 
[11]. In addition to the discrete parts manufacturing, 
multi-products or multi-purpose processors are 
common features in many chemical plants such as 
those producing pharmaceuticals, cosmetics, polymers, 
biochemical, food and beverages, etc. Hence any 
methodology for solving the ELSP (in particular with 
sequence-dependent setups) has enormous potential of 
applicability for industry. The ELSP has been studied 
extensively from the time that Rogers [15] applied the 
economic order quantity (EOQ) formula. Following 
Rogers's work, researchers have used one of following 
three cyclic policies: The common cycle, basic or 
fundamental cycle and time-varying approaches. These 
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include the OEM of Torabi et al [19], the golden 
section search of Ouenniche [13] for the first policy, 
dynamic approach by Bomber [2], marginal analysis by 
Fujita [5] for the second policy and lagrangian 
relaxation method by Dobson [3] for the last policy. 
The ELSP with sequence-dependent setups (ELSPSD) 
was investigated by Maxwell [12]. He showed that the 
problem can be modeled as minimizing a quadratic 
criterion subject to a set of linear constrains. He 
presented an approximate solution technique by using 
implicit rules for specifying of the saw-tooth pattern of 
inventory and using of heuristic rules for changing the 
length of the production cycle. Other early papers also 
include those of Geoffion and Graves [7] and Driscoll 
and Emmons [4].  
Geoffrion and Graves (1976) used a combined 
quadratic linear programming approach. The method of 
Driscoll and Emmons (1977) is based on using 
dynamic programming recursion to solve the problem 
with specified due dates. Singh and Foster [17] 
developed a heuristic with an imbedded quadratic 
programming problem. Irani and Gunasena [10] 
employed family structure setups. Dobson (1989) 
applied time-varying policy to solve the sequence-
dependent ELSP. He used a lagrangian relaxation of 
the formulation which leads to a partial separation of 
the embedded lot sizing and traveling salesman 
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problem. The relaxation results in a new combinational 
problem related to the minimum spanning tree 
problem. The information about frequency of 
production, obtained from this relaxation, is used to 
find heuristic solution for the entire problem. 
Talor et al [18] developed a heuristic algorithm to find 
a good solution for the sequence dependent lot 
scheduling problem. Eliminating the need for creating 
new artificial problems and implementing feasibility 
tests, were preferences of their algorithm. Wagner et al 
[21] developed a heuristic procedure that provides a 
range of solutions from that a manager can choose one 
which is useful in an actual stochastic production 
environment. Their heuristic outperforms Dobson's 
heuristic (1987) when the utilization is high and the 
sequence dependent setup times and costs are 
significant.  
Honng-choun oh et al [8,9] in two papers decomposed 
the entire complex problem into two sub-problems; lot 
scheduling and sequencing. For the lot scheduling, they 
presented a novel mixed integer non linear 
programming approach. Then, for sequencing sub-
problem, they proposed an efficient tabu search to 
determine the sequence and a linear programming 
approximation to construct a schedule. However, to the 
best of our knowledge, there is no contribution to 
economic lot scheduling problem in flow lines with 
sequence dependent setups. 
The text is organized as follow: first we state the 
problem at hand in section 2. Then in section 3 we 
present a mixed non linear integer programming for 
both finite and infinite planning horizon cases. For the 
finite horizon case of the problem, a heuristic search is 
proposed in section 4. In order to obtain an optimal or 
near optimal solution in medium and large scale 
problems, a GA is also developed in section 5. The 
effectiveness and consistent performance of the GA is 
demonstrated by some randomly simulated test 
problems in section 6. Final section is devoted to 
conclusions. 
 

2. Problem Statement 
 We investigate the ELSP with sequence dependent 
setups where in a flow line with m-stages, n products 
are produced over a given planning horizon with 
deterministic and constant parameters. This problem 
involves a combinational part (determining products 
sequence at each stage because of considering non 
permutation flow line system) and a continuous part 
(lot sizing and determining production starting time for 
each product at each stage).  
At each stage, for switching from one product to the 
next one, the corresponding facility must be setup 
which requires setup time and cost that both of them 
depend on the products order. In other words, the setup 
times and costs are sequence dependent. We use 
common cycle policy i.e., every product is produced 
exactly once per stage and no machine can process 
more than one product at a time.  

The production of each product at each stage must be 
sufficient enough to meet the demand, until it is 
produced again in the next period. Implementing zero-
switch rule implicitly assumes no stock-outs or 
backorder at any time and assumes that the appropriate 
amount of inventory is available at start to ensure the 
feasibility. Finally the objective is minimizing the 
average of setup and inventory holding costs per unit 
time across the flow line production system without 
backlogging. 
 

3. Problem Formulation 
Assumptions: 
 Only one machine is available at each stage and the 

machines are continuously available in each stage. 
 Each product requires at most m operations at 

different stages. 
 All parameters such as demand and production rates, 

setup times, setup costs and inventory holding costs 
are deterministic and constant over planning horizon. 

 External demands occur only for end products. 
 Production rates are different for different products 

and different stages or machines. 
 Inventory holding costs directly are proportional to 

the inventory levels and holding times. 
 Shortages are not allowed. 
 Preemption is not allowed, that is, at a given stage, 

once the processing of a lot has started, it must be 
completed without interruption. 

 No inter-stage overlapping is allowed; that is, a lot is 
not transferred to the next stage until the entire lot is 
processed at the current stage. 

 The buffers between stages are unlimited; hence, in-
process inventory is allowed. 

 Delivery of finished products is continuous. 
 Production capacity is sufficient to meet total 

demand; thus there exists at least one feasible 
solution. 

 
Parameters:  

n: number of products. 
m: number of machines (stages or work centers). 
i, k: component indices. 
j: stage index. 

id : Demand rate of product i. 

ijp : Production rate of product i at stage j. 

ijt : processing times for a lot of product i at stage j.  

kijs : Setup time to switch from production of 

product k to product i at stage j. 

kijc : Setup cost to switch from production of product 

k to product i at stage j. 

ijh : Inventory holding cost per unit of product i per 

unit time between stage j and j+1. 

ih : Inventory holding cost per unit of finished 

product i per unit time.  
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M: a large real number. 
H: length of finite planning horizon. 

 
Decision Variables:  
 j : Production sequence vector at stage j. 

  T: common production cycle length. 
  F: the number of production cycles over the finite 
planning horizon. 
 

iQ : Production lot size of component i at different 

stages ( TdQ ii  ).  

 ijb : Process beginning time of component i at stage j 

(after setup operation). 
 

1    if product i is assigned to l-th position in stage j 

0    otherwise
iljx




 

Since after processing each component at each stage, 
there would be a value added for the component, 

therefore values of ijh will be non-decreasing, that is: 

 

, 1; ; 1,..., ; 2,..., 1.i ij ij i jh h h h i n j m      
 

The problem can be formulated as a mixed zero-one 
non linear program. As mentioned before, we restrict 
our attention to the common cycle context where all 
products are assigned the same cycle time T. The 
objective of the problem is to minimize sum of setup 
costs, work-in-process inventory costs and finished 
products inventory costs per unit of time. The first cost 
element, the setup cost per time unit is as follows (see 
figure 1): 
 

Fig. 1. The sequence of setups at machine j to produce the A-C-B sequence. 

 
The setup costs for the non-initial products in the 
sequence are equal to: 
 

, , , , , 1,* * ; , 1,2,.., ; ; 1,2,.., 1; 1,2,.., .k i j k l j i l jC x x i k n i k l n j m       

 
and the setup cost at switch from last product to first 
one in the sequence is equal to:  
 

, , , , ,1,* * ; , 1,2,.., ; ; 1,2,.., .k i j k n j i jC x x i k n i k j m    

 
Without lose of generality, we assume that the setup 
cost of the first position product in the first run is equal 
to its setup cost in which it is produced after n-th 
position product. 

Therefore, the total setup costs per unit of time is : 

 

11
( * * ) ( * * ), , , , , 1, , , , , ,1,1 1 1 1 11 1

TCSETUP

m n n n m n n
C x x C x xk i j k l j i l j k i j k n j i jj l i j iT k k

k i k i




      

     

 

 
 
 
 
  

 
Moreover, two types of inventory are considered: 

work-in-process inventory and finished products 
inventory which are indicated in figure (2). 

 

 
 
 
 
 
 
 
 
 

 

(a) (b) 
Fig. 2. Inventory levels: (a) WIP between stages j-1 and j. (b) Inventory of finished product i 

 
After computing the average inventory of component i 
per unit time in the middle and final stages and adding 

them up over all components and all stages, we will 
have : (For more details see (Ouenniche, [13]): 

A                 C                    B                  A                 C                   B��������

T 

 

1, jiWIP

Tdi .

1, jib 1,1,   jiiji pTdb ijb ijiij pTdb 

Time

iFP

 imii pdTd 1.

imb imiim pTdb  Tbim Time
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 

2

, 1
1 2 , 1

, 1 , 1
1 2

1 1
. 1 .

2 2

.

n m
i i i

i i j
i jim ij i j

n m

i j i ij i j
i j

d d d
HC h h T

p p p

h d b b



  

 

 

   
        

     

 

 



 

 

Therefore, the sum (over all products and all stages) of 
setup and inventory holding cost per time unit is: 
 

1

, , , , , 1, , , , , ,1,
1 1 1 1 1 1 1

1
TC

( * * ) ( * * )
m n n n m n n

k i j k l j i l j k i j k n j i j
j l i k j i k

k i k i

T

C x x C x x




      
 



 
 
 
  

 

 
  

 
2

, 1 , 1 , 1
1 2 1 2, 1

1 1
. 1 . .
2 2

n m n m
i i i

i i j i j i ij i j
i j i jim ij i j

d d d
h h T h d b b

p p p  

   

   
         

     
  

 
Problem P1 demonstrates the finite horizon version of 
the problem: 

 
Problem P1: 

1

, , , , , 1, , , , , ,1,
1 1 1 1 1 1 1

1
Min                                                                                           (1)

( * * ) ( * * )
m n n n m n n

k i j k l j i l j k i j k n j i j
j l i k j i k

k i k i

Z
T

C x x C x x




      
 



 
 
 
  

 

 

2

, 1
1 2 , 1

, 1 , 1
1 2

1 1
. 1
2 2

         .

n m
i i i

i i j
i jim ij i j

n m

i j i ij i j
i j

d d d
h h

p p p

T h d b b



  

 

 



   
       

     

 

 



  

 

Subject to:  

, 1
, 1

; 1,..., , 2,...,i
i j ij

i j

d T
b b i n j m

p



            (2) 

 

 , 1,

.
2 ;

     1, ..., ; 1, ..., ; ;              (3)

k
kj k ij ij k j i j

k j

d T
b s b M x x

p

i n j m k i n

     

   

 


 

1

1; 1,.., ; 1,...,
n

i jx j m i n


   


                        (4) 

 

1

1; =1,...,m; 1,...,
n

i j
i

x j n


                        (5) 
 

1. . ; 1,..., ; 1,...,ij kij i j knjb s x x j m i n              (6) 
 

.
; 1,...,i

im
im

d T
b T i n

p
                                       (7) 

*F T H                                                                  (8) 
 

 0, 0; (0,1 ; , , ;ij i jT b x i j l i l            (9) 
 

1;F F Z                                                          (10) 

 
Constraints (2) state that at each stage, no product can 
be produced before it is completed at the previous 
stage. Constraints (3) stipulate that at each stage, no 
product can be processed before completion of its 
predecessor in the production sequence. Constraints (4) 
and (5) state that each product has a unique position in 
the sequence. Constraints (6) state that, at each stage, 
processing of the first product in the sequence cannot 
start before setting up the corresponding machine. 
Constraints (7) assure that the resulting schedule is 
cyclic so as the process completion time for each 
component at the final stage is less than or equal to the 
cyclic time. Constraints (8) implies that the common 
cycle is such that the planning horizon H is an integer 
multiple of T. Finally constraints (9) and (10) are non-
negativity constraints. 
Another mixed zero-one non linear program developed 
in this paper corresponds to the problem in infinite 
planning horizon case. It is worthy to mention that this 
model and the previous one are similar in both 
objective and constraints unless constraints (8) that 
must be eliminated and constraints (7) that should 
change to the following constraints: 
 

 ,1, , ,2 ;

1,..., ; 1,..., ; ;

kj
kj kij ij i j k n j

kj

d T
b s b T M x x

p

i n j m k i

      

  

            (11) 

 
Constraints(11) imply that, at each stage the time that 
elapses between the production starting time of the first 
product in the sequence and the completion time of the 
last product,  is less than or equal to the common cycle 
length T. 
Unfortunately, it is difficult to solve this problem 
optimality. Hereafter we propose a heuristic search to 
solve it approximately. 
 

4. Heuristic Approach 
In this section we propose some simple heuristics 

to determine the production sequence vectors at 
different stages. 
 
4.1. Neighborhood Search (NEH) 
First, all products at each stage are arranged once in a 
descending order and once more in an ascending order 
of 

ij i ijd p  . This criterion represents the fraction 

of cycle time in which directly the i-th product is 
produced by the j-th machine. Therefore, this 
sequencing rule can be seen as generalization of the 
shortest and longest processing time for descending 
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and ascending order respectively. Then the first two 
products will be put in the sequence directly. For 
remainder i products, i=3,4,..,n, the best order will be 
found according to the setup costs or setup times, by 
placing it in all the possible i positions in the sequence 
of products that are already ordered. For example, if 
i=4, the previously built sequence would contain the 
first three products of the sorted list calculated earlier. 
Then the fourth product could be placed either in the 
first, in the second, in the third or in the last position. 
The best sequence of the four products would be 
selected for the next step. This procedure can make 
many similar sequences based on this NEH heuristic 
and in the following modification. After having 
ordered the products, we pick randomly two products 
from the ordered list and exchange them with the two 
first products. Then we proceed with the rest of the 
NEH search. In this paper this procedure is repeated 
twice and therefore 48 sequences would be generated. 
In this manner, we can use the following rules in 
constructing the initial sequence vector of each stage 
(see Table. 1). 
 

Tab. 1. Criterions for arranging the products in 
every stage. 

Description��Abbreviation��Criterion ��
Longest Demand to capacity 
ratio according to setup cost LDR/C 

Longest Demand to capacity 
ratio according to setup time LDR/S 

Shortest Demand to capacity 
ratio according to setup cost SDR/C 

Shortest Demand to capacity 
ratio according to setup time SDR/S 

i
ij

ij

d

p
 ��

Longest Demand to holding 
cost according to setup cost LDH/C 

Longest Demand to holding 
cost according to setup time LDH/S 

Shortest Demand to holding 
cost according to setup cost SDH/C 

Shortest Demand to holding 
cost according to setup time SDH/S 

i
i j

i j

d

h
 ��

Longest Average holding 
cost according to setup cost LAH/C 

Longest Average holding 
cost according to setup time LAH/S 

Shortest Average holding 
cost according to setup cost��SAH/C 

Shortest Average holding 
cost according to setup time SAH/S 

ij
ij

ij

h

h
 


��

Longest cap_ratio to holding 
cost according to setup cost��LRH/C 

Longest cap_ratio to holding 
cost according to setup time LRH/S 

Shortest cap_ratio to holding 
cost according to setup cost��SRH/C 

Shortest cap_ratio to holding 
cost according to setup time SRH/S 

ij
ij

ij

p

h
 ��

 
4.2. Holding Cost Base Approach (HCB) 

Since inventory holding costs have a big share in 
the total cost, following algorithm tries to reduce this 
costs by making an appropriate sequence. 

Re .

( ) 1, ( ) .1

1 : 1 .

* ( ) ( ).,

( ) 1.1

Begin

ordertheproductsasdesendingorderof hi

Let r n r r rm m

Until j do j j
dkSettheproductsasdesendingorderof h where k ipi j i j jkjk

Let r n rj

End

 

 



   


  




  


 
Now all generated sequences are considered to 
evaluate their effects on total cost. This is done by 
solving the common cycle non linear model presented 
in figure 5. To solve this model, we use an optimal 
enumeration method (OEM) within which the mixed 
non linear problem (P1) is replaced by its linear 
counterpart as the variable T is supersede with H/F and 
F=1. In an iterative process, by increasing F by 1 and 
solving the resulting mixed linear program we try to 
obtain the optimal or near optimal solution (Torabi et 
al., [20]). This procedure repeats until total costs of all 
sequences are calculated and the minimum of them will 
be the solution of the original problem. 

 
5. Genetic Algorithm 

To evaluate previous heuristic approach and to 
obtain good solution in large scale problems we present 
a GA as follows: 

 
5.1. Chromosomes Representation 
A chromosome by our definition contains of m sub-
chromosomes with n genes in each of them and j-th 
sub-chromosome represents the sequence of products 
in j-th stage. In figure (3), a sample chromosome for a 
problem with n=4 and m=3 is depicted. 
 

4��3��2��1��3��1��4��2��4��1��2��3 

Fig. 3. should be replaced with the content of 
attached file Fig. 3 

 
 

According to this chromosome representation the 
sequence vectors at different stages are: 
 

1 2 3{3,2,1,4} {2,4,1,3} {1,2,3,4}      
 

This representation of chromosomes has two privileges, 
one that there is a unique string associated with each 
solution for the problem and another that all of these 
chromosomes are feasible because it shows a feasible 
sequence. Therefore, based on the above chromosome 
representation, for a problem with n products and m 
stages the length of the associated string (number of 
genes) is equal to m*n. Also the number of solutions or 
chromosomes is (n!)m. This value for a problem with 
n=6 and m=4 is equal to 207,360,000 and for a 
problem with n=10 and m=10 is equal to 
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13,168,189,440,000. The large number of feasible 
points or chromosomes is a good reason for using an 
intelligent search tool such as GA. 
 
5.2. Initial Population 

Chromosomes that are constructed by NEH and 
HCB heuristics will be used as initial population in 
GA. 

 
5.3. Fitness Function 

According to the problem structure, the fitness 
function is the objective function of the problem except 
that in this case the original mixed zero-one nonlinear 
problem is replaced by a NLP one which the binary 
variables are now fixed according to the chosen 
production sequence. Therefore the setup cost is a 
fixed amount represented by A. (see figure 4). 

 

 
2

, 1 , 1 , 1
1 2 1 2, 1

Problem P2:

Min

1 1
. 1 . .
2 2

n m n m
i i i

i i j i j i ij i j
i j i jim ij i j

A
Z

T

d d d
h h T h d b b

p p p  

   

 

   
         

     
  

 (12) 

 
Subject to: 

, 1
, 1

.
; 1,..., , 2,...,i

i j ij
i j

d T
b b i n j m

p



        (13) 

 

( 1)

( 1) ( 1), ( ) ( )
( 1)

;

1,..., ; 1,..., ; ;

j

j j j j

j

i

i i i i
i

d T
b s b i

p

n j m k i n



   





 



   

  

       (14) 

 

(1) ( ) (1) ; 1,..., ; 1,...,
j j jj n jb s j m i n         (15) 

 
.

; 1,...,i
im

im

d T
b T i n

p
                               (16) 

 
*F T H                                                  (17) 

 

 0, 0; (0,1 ; , , ;ij i jT b x i l j l i         (18) 

 
1;F F Z                                                (19) 

 
Cutpoint2 

Fig. 4. The NLP model for evaluating the fitness of 
chromosomes. 

 

5.4. Crossover Operation 
The crossover operator creates offspring sequencing 

by coalescing two other sequences called parents. The 
aim is to generate better children. Many different 
general and specific crossover operators have been 
proposed for the permutation based representation 

(Torabi et al., [19]; Poon and Carter, [14]). Some 
typical are: PMX or partially mapped crossover, OP-
TP or one-two point crossover, LOX or linear order 
cross over, all of them tend to disrupt building blocks 
in the latter stages of the algorithm. Using these 
operators may create offsprings that are consistently 
worse than their progenitors. Due to this fact Ruis and 
Maroto [16] who used GA for solving the flow shop 
scheduling problem with sequence dependent setup 
times, proposed following four crossover operators in 
order to overcome this problem: 

1. Similar Job Order crossover or (SJOX) 
2.  Similar Block Order crossover or (SBOX) 
3.  Similar Job 2- point order cross over or 
(SJ2OX)  
4.  similar block2-point order cross over or 
(SB2OX)  

 

Their study revealed that the last operator (SB2OX) 
was superior to all other considered operators. So we 
used this operator with some changes in our GA. The 
detailed descriptions are given as follows: 
Regarding to the non permutation chromosomes of our 
problem, each of them with m Permutation sub 
chromosomes, first of all, j-th sub chromosome 
(j=1,�m) of both parents are examined on a position-
by-position basis. We consider blocks of at least two 
consecutive identical Jobs and only those identical 
blocks on both parents are directly copied to the 
children. Then, two random cut points are taken and 
the sections between these two points are directly 
copied to the children. Finally, the missing elements of 
each offspring are copied in the relative order of the 
other parents (see figure 5). 
 

  
\  

 

 
 

Cutpoint1 
Parent1 1 2 4 3 9 8 10 5 7 6 

           

Child1 8 2 4 3 6 9 1 5 7 10 
           

Child2 6 2 4 3 9 8 10 5 7 1 
           

Parent2 8 2 4 3 6 9 1 5 7 10 
Fig. 5. SB2OX crossover operator 

 

depending on having identical or different cut points 
for sub chromosomes, we will have two specific 
crossover operators for these non permutation 
chromosomes. 

6��7��5��10��8��9��3��4��2��1��Parent1��
 7��5��1��9��6��3��4��2����Child1 

 7��5��10��8��9��3��4��2����Child2 

10��7��5��1��9��6��3��4��2��8��Parent2 

Cutpoint2 Cutpoint1 
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5.5. Mutation Operator 
A genetic algorithm includes a mutation operator 

to avoid convergence trapping in local optima and to 
introduce lost genetic material and variability in the 
population. 
For the proposed GA, we used the SHIFT mutation 
where for every sub-chromosome a randomly picked 
position in the sequence is relocated to another 
randomly picked position and the jobs between two 
positions moving along. This operator can be changed 
as a cost based one if the two randomly picked 
positions are selected as follows: 
In each stage j, (j=1,..., m), position of product k is the 
first position if max ; ,ikj ikjc c i j   and position of 

product l is the second position if min ;lkj ikjc c i  . 

Thus we have two randomly and cost based shift 
mutation operators (see Figure 6). 

 
Initial chromosome 1 5 3 4 6 2 7 

        

  
First random 

position 
Second random 

position 
Mutated 

chromosome 
1 5 4 6 2 3 7 

Fig. 6. Shift mutation operator��

 
5.6 Population Replacement 

Next generation chromosomes are selected from 
the enlarged population in which all parents and 
offsprings have same chance for the selection. The 
mechanism of sampling is (   ) proposed by Batch 

[1].  
In this strategy  offsprings strive with  parents for 

survival. It avoids from entering similar chromosomes. 
First generate pop_size numbers of random numbers 
between zero and one.  
Then, for each random number, if its value is smaller 
than crossover rate ( 0 1cp  ), the corresponding 

chromosomes will be selected as a parent. If the 
number of chromosomes is odd, the last chromosome 
won�t be considered.  
Finally, by eliminating the similar chromosomes and 
replacing them with random produced chromosomes 
and ordering them according to the fitness function the 
best pop_size number of them will be selected. This 
process will be repeated for mutation operator. Let 
cross_size and mut_size denote the number of 
chromosomes selected to undergo the crossover and 
the mutation operation, respectively.  
Then we have: 

Cross_size= [
2

)P size _ (pop round c ] and mut_size= 

round (pop_size
mp ) 

Where cP  and mP  are crossover and mutation rates 

respectively and both of them are between zero and 
one. 

Therefore in each iteration (generation) pop_size + 
cross_size + mut_size number of chromosome are 
evaluated and the best pop_size number of them will 
be transferred to the next generation. The termination 
criterion determines when the GA will stop. In other 
words, the genetic operations are repeated until a 
termination condition is met. In our implementation, 
we stop the GA, if the maximum number of 
generations or max_no_improve, is met. 

 
5.7. Proposed GA 

The following is our proposed GA for the finite 
horizon ELSP in flow lines: 

 
Step1: set the GA parameters, including the population 

size, pop_size, the maximum number of 
generations, max_gen, the crossover rate, 

cp , 

the mutation rate, 
mP , and the number of 

generations without improvement for the last 
best solution max_no_imp as stopping 
condition. 

Step 2: Generate initial population using NEH and 
HCB. 

 
Step 3: Apply the optimal enumeration method (OEM) 

for each chromosome to calculate the related 
fitness value. 

 
Step 4: follow the chromosome selection procedure to 

select cross_size pairs of chromosomes and 
perform the crossover operation. 

 
Step 5: Evaluate the children, eliminate the similar 

chromosomes and select the best pop_size 
number of them according to the fitness value. 

 

Step 6: Repeat the chromosome selection procedure to 
select mut_size number of chromosomes from 
the revised population and perform the mutation 
operation.  

 

Step 7: Evaluate the muted chromosomes, eliminate 
the similar ones and select the best pop_size 
number of them.  

 

Step 8: Repeat stages 4 to 7 until termination condition 
is met. 

 

6. Performance Evaluation 
6.1. Test Problems 

We used randomly generated problems to evaluate 
our GA. Each randomly generated problem in this 
paper has following range of parameters as uniform 
distribution: 

 

   

   

50, 500 10, 20

10000, 20000 0.01, 0.025

k ij

ij k ij

di U C U

P U S U

 

 

 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
16

 ]
 

                             7 / 10

https://www.iust.ac.ir/ijieen/article-1-44-en.html


8                    MM..  HHeeyyddaarrii,,  BB..  KKaarriimmii  &&  SS..AA..  TToorraabbii                                                            The Economic Lot Scheduling Problem in Flow Lines �             

 
To generate inventory holding cost for a given product 
i first we generate its total value from a uniform 

distribution between 10 and 100. Then ih the annual 

inventory holding cost per unit of final product is taken 
to be equal to 10% of its total value. The inter-stage 

inventory holding costs ijh are also taken to be equal to 

10% of product value after stage j. we assume that raw 
materials count for 40% of the product total value and 
the remaining 60% (the added value) are randomly 
distributed among m stages (for more details see 
(Ouenniche, [1]). 

 
6.2. Parameters Setting 

The different operators and levels of the 
parameters clearly affect the quality of the solutions 
obtained by a genetic algorithm. Therefore, in 
following three sub-sections, we explain parameters 
setting of our GA. 

 
6.2.1. Selecting the Crossover and Mutation Operations  

In order to determine the GA operations, we test 
three types of the problem )43,25,33(   for three 

times. Other parameters have been fixed as follows: 

 
Max-no-imp=5, 
number of generations=5, 

0.7, 0.2c mP P 

 

 
IR: Using Identical SBO2X crossover and Random 
shift mutation  
IC: Using Identical SBO2X crossover and Cost based 
shift mutation 
VR: Using Variant SBO2X crossover and Random 
shift mutation  
VC: Using Variant SBO2X crossover and Cost based 
shift mutation  
Running these 36 problems by a PC with 2.0 GH speed 
of CPU and determining the objective functions and 
running times of them, now we can select our 
parameters.  
Sum of weighted relative errors (SWRE) that is 
denoted follow is a weighted criteria that can Justify 
the results. 

* *| |

* *
1 1

(1 )
j j

ij i ij i

i ii i

z z t t
S W R E w w

z t 

    
        

   
   

Where:  

ijz = objective function of j-th problem in i-th case.    
* min{ }i ij

j
z z  

ijt = Run time of algorithm for solving the j-th 

problem in i-th case * min{ }i ij
j

t t  w= superiority of 

time to cost. The minimum value of SWRE among IR, 
IC, VR and VC will be the best case.  

Tab.2. SWRE criterion for selecting the operators 

VC VR IC IR 
CASE 

0.877933��0.393396��0.114212��0.538233��w = 0.1 
0.966872��0.48882��0.206287��0.564991��w = 0.3 
1.055811��0.581368��0.298362��0.591749��w = 0.5 

 

As it is shown in table 2 the minimum value of SWRE 
in each case of w=0.1, w=0.3 and w=0.5 correspond to 
identical SBO2X and cost based shift mutation. These 
results were expected about the mutation operator. 
About the crossover operator selecting the identical cut 
points for all of the sub-chromosomes will cause 
decrease of ( 1,  jiij bb ) which has direct effect on the 

objective function. 
 
6.2.2. Determining the Initial Population and Number 
of Generations: 
R (20): In this case 20 chromosomes are produced 
randomly as initial population. 
R (50): In this case 50 chromosomes are produced 
randomly as initial population. 
Heu: In this case only chromosomes are produced 
heuristically as initial population 
RH (100): In this case in addition to 48 heuristic 
produced chromosomes, 52 chromosomes are produced 
randomly as initial population. 
Also, max_gen and max_no_imp will be evaluate in 
four fallowing cases respectfully: (10,1), (30,5), 
(50,10), (nxm, m) 
Running these 64 problems for SWRE criteria we 
found that best parameters setting is as follows: 
max_gen=10 and max_no_imp=1 and the initial 
population is heuristic produced chromosome. 
Finally crossover and mutation rates after initial tests 
are set as 7.0mP  and 2.0cP . 
 

6.3. A Lower Bound for the Problem 
In order to evaluate our GA, in this sub-section, 

we present a lower bound (LB) by solving the 
following model: 
 
Problem P3: 

2

, 1 , 1 ,
1 2 2, 1

Min                                                                                               (20)

1 1
. 1 . .
2 2

LB

n m m
i i i

i i j i j i ij i
i j jim ij i j

A
Z

T

d d d
h h T h d b b

p p p 

  

 

   
         

     
    1

1

n

j
i







 
Subject to: 

, 1
, 1

.
; 1,..., , 2,...,i

i j ij
i j

d T
b b i n j m

p



            (21) 

, 1
, 1

.
; 1,..., , 2,...,i

i j ij
i j

d T
b b i n j m

p



         (22) 

 

, , ,1* ; 1,..., ; 1,...,i j i j ib s x j m i n            (23) 
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.
; 1,...,im

im

di T
b T i n

p
                             (24) 

 
*F T H                                                       (25) 

 
 0, 0 ; (0,1 ; ,ij ijT b x i j                  (26) 

 
1 ;F F Z                                              (27) 

 
This model has following specifications: 
1- By replacing the following relations, the model will 
be relaxed from sequence dependent setups to 
sequence independent setups: 
 

, , , , ,* * { } { }k i j i j k i j
k

A n m average C S average S   

2- Sequencing Variables have been eliminated from the 
model 
3- The problem statement has been changed from non 
permutation to the permutation case. This will reduce 

the zero_one variables to 1

m
 comparing to Problem P1 

and is no more in quadratic forms. 
 
6.4. Computational Results 
 Finally to evaluate the proposed GA six different 
problem sizes with 5 or 10 products and 2, 5 or 10 
stages have been considered. The parameters for each 
problem have been generated three times. These 18 test 
problems are solved by the heuristic method. 
Furthermore they are solved by GA three times and the 
best has been considered. Finally their lower bound has 
been determined using LINGO 6.0 as an optimal solver 
for the mathematical models. All of 12 results are 
presented in table 3: 

 
Tab. 3. Computational results. 

LB(lingo) Best GA in 3 runs Best Heuristic Solution Pro_size 
Obj value Running Time Obj value Running Time Obj value Heuristic Name n*m_Run 

22107 1929.4 23239 93.04 23239 LAH/S 5*2_1 
12113 2163.4 12870 92.032 13603 LDR/C 5*2_2 
18063 2018.8 18878 86.585 20195 LAH/S 5*2_3 
51775 2565.3 52212 97.59 54309 HCB 5*5_1 
37002 2836.3 37969 118.46 41472 HCB 5*5_2 
36219 2819.5 37800 107.475 46846 HCB 5*5_3 
63593 2853.1 65331 94.897 68500 HCB 5*10_1 
52834 2623.8 55668 127.663 57668 HCB 5*10_2 
51024 3228.9 53347 111.371 55538 HCB 5*10_3 
46823 2393.7 48362 99.804 515200 LAH/C 10*2_1 
41002 2426.1 42050 109.407 44512 LDR/S 10*2_2 
40197 2019 41730 100.818 42618 LDR/S 10*2_3 
87314 2803.2 95193 87.92 101700 HCB 10*5_1 
80217 2768.3 87232 102.63 94469 HCB 10*5_2 

109504 2834.2 120240 91.11 126340 HCB 10*5_3 
* 6923.5 188370 260.29 162200 HCB 10*10_1 
* 7542.3 119450 251.35 121560 HCB 10*10_2 
* 8381.4 129010 261.12 141060 HCB 10*10_3 

 
Let Z denotes the total cost obtained via GA, we can 
calculate its corresponding performance ratio as the 

100*)( LBLB zzz   
 

Tab. 4. comparing ratio for the test problems. 
9 8 7 6 5 4 3 2 1 Problem 

numbers 
4.5 5.3 2.7 4.3 2.6 0.8 4.5 6.2 4.9 ș 
18 17 16 15 14 13 12 11 10 Problem 

numbers 
* * * 9.8 8.7 9.02 3.8 0.2 3.2 ș 

 

Largest performance ratio for the collection of 
instances is 9.8%. It should be  noted that the solutions 
obtained from the problem P3 are often infeasible due 
to eliminating sequencing constrains, which means that 
the optimal cost of the original problem P1 often would 
be greater than the lower bound. 
Although with consuming a considerable time we can 
obtain better solution by GA, computational results 

obviously show that the heuristic method obtains a 
feasible solution very soon without much running time 
even with increasing the problem size. 
 

7. Conclusions 
In this paper, the common cycle approach has been 

used to formulate the economic lot scheduling problem 
in flow line systems where the machines setup times 
and costs are sequence dependent. First, two new 
mixed zero-one nonlinear models are developed to 
solve the problem in finite and infinite horizon cases. 
Then, to avoid solving the complex mixed non-linear 
program directly, a heuristic method is suggested to 
determine its near optimal solution. Finally, a genetic 
algorithm with special operations is suggested to 
improve the heuristic solution. Computational results 
indicate that the heuristic could give a good feasible 
solution in a short time, and the performance of GA is 
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very promising. How ever it is evident that by 
changing the assumption, we will confront new 
problems that can be considered in further researches.  
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