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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

It was suggested in 2004 by some researchers that it might be possible 

to improve production systems performance by applying the first and 

second laws of thermodynamics to reduce system entropy. Then these 

laws were used to modify the economic order quantity (EOQ) model 

to derive an equivalent entropic order quantity (EnOQ). Moreover the 

political instability or uncertainty of a country (as well as the whole 

world) leads to a much more unstable situation in the present world 

economy. Thus, changes in inflation takeplace, and it is needed to 

consider uncertain inflation rate. In this paper we extend the EnOQ 

model by considering deteriorating items with imperfect quality and 

price dependent demand. We also assume fuzzy inflation and discount 

rates. A mathematical model is developed to determine the number of 

cycles that maximizes the present value of total revenue in a finite 

planning horizon. The fuzzified model for inflation and discount rate 

is formulated and solved by two methods: signed distance and fuzzy 

numbers ranking. Numerical examples are presented and results are 

discussed. Results show that the number of cycles decreases in fuzzy 

inflationary conditions. They also illustrate that defuzzification 

method results in more cycles than fuzzy method.  
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11..  IInnttrroodduuccttiioonn

  

As markets have become more and more 

competitive, disorder has become a prevailing 

characteristic of modern productive systems that are 

operating in complex, dynamic and uncertain 

environments. Some researchers in the discipline of 

management science/operational research have applied 

information theory and entropy approaches to account 

for disorder when modeling the behavior of productive 

systems, e.g., ([1],[2] and [3]). The first and the second 
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laws of thermodynamics were used by some 

researchers to improve the performance of inventory 

systems. Jaber et al. [4] proposed an analogy between 

the behavior of production systems and the behavior of 

physical systems. Their paper suggested that by 

applying the first and second laws of thermodynamics 

to reduce system entropy, improvements could be 

gained in production system performance. They 

introduced the concept of entropy cost to account for 

hidden costs such as the additional managerial cost that 

is needed to control the improvement process in [5] 

and increased labor union leverage in  [6]. Their results 

suggested that items should be ordered in larger 

quantities than indicated by the classical EOQ model. 

In a subsequent paper, Jaber et al. [7] investigated their 

earlier model [4] for coordinating orders in a two-tier 

Inventory,  
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supply chain under the assumptions of a constant rather 

than an increasing commodity flow and for a finite 

rather than an infinite planning horizon. Recently, 

Jaber [8] investigated the model of [4] for the 

assumption of permissible delay in payments. The 

results of [4] are interesting but controversial because, 

as commented above, using smaller batches appeals 

particularly when control and space are important such 

as with JIT systems. Intuitively, however, smaller 

batches may incur lower total entropy costs in several 

situations.  

For instance, when items deteriorate, large batches are 

likely to suffer more deterioration and therefore have a 

larger associated entropy cost. This paper examines 

this idea by extending the analysis of [4] to examine 

whether the effect of deterioration counterbalances the 

earlier suggested increases in batch sizes and leads to 

smaller batches. [9] suggested an Entropic order 

quantity (EnOQ) model for deteriorating items.  

In addition, one of EOQ model’s assumptions is that 

the received items are with perfect quality. However, 

due to imperfect production process, natural disasters, 

damage or breakage in transit, or for many other 

reasons, the lot sizes received may contain some 

defective items. To capture the real situations better, 

several researchers studied the effect of imperfect 

quality on lot sizing policy. Rosenblatt and Lee [10] 

concluded that the presence of defective products 

motivates smaller lot sizes. Schwaller[11] presented a 

procedure that extends EOQ models by adding the 

assumptions that defectives of a known proportion 

were present in incoming lots and that fixed and 

variable inspection costs were incurred in finding and 

removing the items.  

Zhang and Gerchak[12] considered a joint lot sizing 

and inspection policy Studied under an EOQ model 

where a random proportion of units are defective and 

must be replaced by non-defective ones. Salameh and 

Jaber [13] assumed that the defective items could be 

sold as a single batch at a discounted price prior to 

receiving the next shipment, and found that the 

economic lot size quantity tends to increase as the 

average percentage of imperfect quality Items increase. 

Chang [14] proposed an EOQ model with imperfect 

quality items where the defective rate is presented as a 

fuzzy number. Chung et al. [15] established a new 

inventory model with two warehouses and imperfect 

quality. Jaber et al. [16] applied the concept   of 

entropy cost to extend the classical EOQ model under 

the assumptions of perfect and imperfect quality[16]. 

extended the work of [13] by assuming the percentage 

defective per lot reduces according to a learning curve. 

Lo et al. [17] developed an integrated production-

inventory model with a varying rate of deterioration 

under Imperfect production processes, partial 

backordering and inflation. 

On the other hand, most of the classical inventory 

models did not take into account the effects of 

inflation. This has happened mostly because of the 

belief that inflation will not influence the cost and price 

components to any significant degree. But, during the 

last few decades, due to high inflation in the 

developing countries the financial situation has been 

changed and so it is not possible to ignore the effect of 

inflation any further. The Pioneer research in this 

direction was Buzacott[18], who developed an EOQ 

model with inflation subject to different types of 

pricing policies.  

In the same year, Misra[19] also developed an EOQ 

model incorporating inflationary effects. Padmanabhan 

and Vrat [20] developed an inventory model under a 

constant inflation rate for initial stock-dependent 

consumption rate. Datta and Pal [21] developed a 

model with linear time-dependent demand rate and 

shortages to investigate the effects of inflation and time 

value of money on ordering policy over a finite time 

horizon. Hariga [22] extended [21] model by relaxing 

the assumption of equal inventory carrying time during 

each replenishment cycle and modified their 

mathematical formulation. Hariga and BenDaya [23] 

then extended [22] by removing the restriction of equal 

replenishment cycle and provided two solution 

procedures with and without shortages. Horowitz [24] 

introduced inflation uncertainty into a basic EOQ 

model.  

Chern et al. [25] extended the traditional model to 

allow not only for general partial backlogging rate but 

also for inflation. They considered that imperfect items 

are reworked at a cost. Roy et al. [26] established an 

inventory model for a deteriorating item with displayed 

stock dependent demand under fuzzy inflation and time 

discounting over a random planning horizon. K. Maity 

and M. Maiti [27] proposed a numerical approach to a 

multi-objective optimal inventory control problem for 

deteriorating multi-items under fuzzy inflation. 

Mirzazadeh et al. [28] developed an inventory model 

under stochastic inflationary conditions with variable 

probability density functions (pdfs) over the time 

horizon. Mirzazadeh [29] presented an inventory 

model under variable inflationary condition with 

inflation-proportional demand rate. Sarkar and Moon 

[30] proposed production inventory model for 

stochastic demand with the effect of inflation. 

Imperfect items with deterioration are shown in 

industries such as electronic, agriculture and food 

industries. In the other hand, the major loss due to 

inflation is caused by its uncertainty instead of its high 

rate. Uncertainty in future inflation rate rises the 

inflation rate and in turn high inflation rate increases 

uncertainty in future inflation rate. So due to the 

world’s current uncertain conditions it is important to 

consider uncertainty in inflation rate to capture the real 

world better. Hence, in this paper, a new 

thermodynamics approach model under fuzzy 

inflationary conditions, fuzzy time discounting for 

defective items with constant defective and 

deterioration rate and time dependent demand has been 

proposed.  
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2. Preliminaries 
Before presenting fuzzy inventory model, we 

introduce signed distance defuzzification method 

which has recently used by some researchers in 

inventory models (e. g. [31],[32]). The definitions are 

from [32] and [14]. 

 
Definition1. The fuzzy set a  of R, 10  , is 

called a level α fuzzy point if: 
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ax
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Let  pF  be the family of all α level fuzzy points. 

Definition2. The fuzzy set   ba ,  of R , 10  , is 

called a level α fuzzy interval if: 
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For each  1,0 , let     RbababaFI  ,,,  . 

Definition3. For any a and 0∈R, define the signed 

distance from a to 0 as   0,d0 aa  . 

If 0a  the distance from a to 0 is  0,d0 aa  . If 

0a  the distance from a to 0 is  0,d0 aa  . 

Hence,   aa 0,d0
  is called the signed distance from 

a to 0.  

Let Ω be the family of all fuzzy sets B
~

 defined on R 

with which the        ul BBcutB ,  exists for 

every  1,0 , and both  lB and  uB are 

continuous functions on  1,0 . Then, for 

any B
~

, we have: 
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   ul BBB .              (3) 

 

From Definition3, the signed distance of two end 

points,  lB  and  uB , of the 

       ul BBcutB ,  of B
~

 to the origin 0 is 

     ll BBd 0,0  and, respectively. 

Their average,      2 ul BB  ,is taken as the signed 

distance of      ul BB ,  to 0. 

That is, the signed distance of interval      ul BB ,  to 

0 is defined as: 
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In addition, for every  1,0 , there is a one-to-one 

mapping between the α-level fuzzy interval 
      ul BB ,  and the real interval      ul BB , , 

that is, the following correspondence is one-to-one 

mapping:  
 

           ulul BBBB ,,  .             (5) 

 

Also, the 1-level fuzzy point 10
~

 is mapping to the real 

number 0. Hence, the signed distance of 

      ul BB ,  to 10
~

 can be defined as: 
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Moreover, for B
~

, since the above function is 

continuous on 10  , we can use the integration 

to obtain the mean value of the signed distance as 

follows: 
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Property1. For the trapezoidal fuzzy number 

),,,(
~

srqpB  the signed distance of B
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 to 10
~

is: 
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    (7) 

 

We also need a method for ranking fuzzy numbers. The 

definition is from [33].   
 

Definition4. Let M=  4321 \\\ mmmm  and 

N=  4321 \\\ nnnn  .Then N <M if 22 mn   and N > 

M if 22 mn  . Assume that 
22 mn  .Then N < M if 

33 mn   and N > M if 33 mn  . Assume that 

22 mn   and
33 mn  .Then N < M if 11 mn   and N 

>M if
11 mn  . Assume that 22 mn  , 

33 mn   and 

11 mn  . Then N <M if 44 mn   and N >M if 

44 mn  . If 22 mn  ,
33 mn  , 

11 mn   and 

44 mn  , then M = N and discard one of them, with 

their corresponding iz values. 
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3. Mathematical Modeling 
To derive the entropic model for deteriorating items 

considering the effect of imperfect items and fuzzy 

inflationary conditions we first define a system. Then 

the concepts of commodity flow and entropy costs are 

introduced and the assumptions are presented. Finally, 

the mathematics for the proposed model is presented. 

This paper develops the model proposed in[9] to 

include imperfect items and fuzzy inflationary 

conditions. The fuzzified model for inflation and 

discount rate is formulated and solved by signed 

distance and fuzzy numbers ranking methods. We use a 

simple algorithm to find optimal solution. 

 

3.1. Basis of the Model 

A physical thermodynamic system is defined by its 

temperature, volume, pressure and chemical 

composition. A system is in equilibrium when these 

variables have the same value at all points. In a similar 

manner, a production system could be described by its 

characteristics, for example the price (P) that the 

system ascribes to ascertain commodity (or collection 

of commodities) that it produces. Reducing the price of 

a commodity below the market price may increase 

customers’ demand, and produce a commodity flow 

(sales) from the system to its surroundings. This could 

be considered to be similar to the flow of heat from a 

high-temperature reservoir (source) to a low-

temperature reservoir (sink) in a thermodynamic 

system. 

It is recommended to see [7] to understand how the 

first and the second laws of thermodynamics were 

applied in a one-node commodity flow system .To 

guarantee a flow of commodity from the inventory 

system to the market, the following strategies are 

considered. The first strategy suggests that a firm may 

provide the same quality product as its competitors at a 

lower price, and the second strategy suggests that a 

firm provides a better quality product than its 

competitors at the same price. Like [4], this paper 

adopts the first strategy where the suggested 

commodity flux, or demand rate is of the form: 

 

)),()(()( 0 tPtPkt                              (8) 

 
where K (analogous to a thermal capacity) represents 

the change in the flux for a change in the price of a 

commodity and is measured in additional units of 

demand per year per change in unit price e.g. 

units/year/$. Let P(t) be the unit price at time t, and 

)(0 tP  the market equilibrium price at time t. [4] 

assumed an increasing commodity flow(customer’s 

demand) over a specified and short period of time. This 

strategy assumes a constant equilibrium price, that is, 

"Eq. (8)" is written as ))()(()( 0 tPtPkt  , where 

0P  is constant for every  Tt ,0 . Jaber et al. [4], who 

also presented the background and further discussion, 

assumed a strategy of increasing commodity flow. 

With this strategy, the equilibrium price   00 PtP   is a 

constant for every  Tt ,0 , and P(t) is a 

monotonically decreasing function over the specified 

interval, i.e., 0)('

0 tP  and 0)(''

0 tP  for every 

 Tt ,0 . This strategy is assumed to increase 

customer demand, i.e., )( t  increases over the interval 

[0,T] as a result of the price discounts 

 0)()( 0  tPtP . [4] suggested adding a third 

component, representing the entropy cost, to the order 

quantity cost function. Noting that when 
0PP  , the 

direction of the commodity flow is from the system to 

the surroundings, the entropy generation rate must 

satisfy: 
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The expression for )( t  is given from (8), )( t is the 

total entropy generated by time t, and S  is the rate at 

which entropy is generated. In [4] the entropy cost has 

computed by dividing the total commodity flow in a 

cycle of duration T (determined by integrating "Eq. 

(8)") by the total entropy generated over time T 

(determined by integrating "Eq. (9)") as
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E(T) is measured in an appropriate price unit such as 

dollars and it is of constant value irrespective of the 

length of the cycle T. 

Jaber et al. [4] assumed  


T

tdtetPtPkQ
0

.

0 )()(   

because there is no deterioration, and therefore, 

)(TDQ  , where )(TD  is the total demand in a cycle 

of length T. Now by considering the effect of inflation, 

deterioration and imperfect items we could rewrite the 

formulae of Q as: 
 

  
.

)1(

)()(
0

..

0

p

dteetPtPk

Q

T

ttR








 

           (11) 

 

3.2. Assumptions and Notation 

A lot of size Q is delivered instantaneously with a 

purchasing price of c per unit and an ordering cost of 

A. It is assumed that each lot received contains p 
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percentage defectives. The selling price of good-

quality items is P(t) per unit. A 100% screening 

process of the lot is conducted at a rate of b units per 

unit time and cost of d; items of poor quality are kept 

in stock and sold prior to the next replenishment (in τ) 

as a single batch with a lower price of ν per unit. The 

inflation and discount rates are shown by i
~

and r~ , 

respectively, and are represented by trapezoidal fuzzy 

numbers so the discounted rate of inflation is shown by 
irR
~~~

 . The constant deterioration rate is θ. 

Demand is increasing by decrease in firm price over 

time and shown by  .)()()( 0 tPtPkTD    

K is coefficient of elasticity that implicates the change 

in the flux for a change in the price of a commodity. 

Let the equilibrium and firm’s price functions conform 

to
00 )( PtP    and .

.
)0()(

T

ta
PtP   

Lead time is negligible and no shortages are allowed. 

We assume n cycle of length T in finite planning 

horizon, H, so TnH .  (The inventory level is shown in 

Fig. 1).We use present value method to find n which 

maximize total profit during the finite time horizon 

which length is H. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. The inventory level in finite time horizon H 
 

3.3. Inventory Level 

The differential equation describing the inventory level 

)( tI  in the interval )1(.).1( njTjtTj   
is given by: 

.0)()()(  ttIdttdI              (12) 
 

subject to the initial conditions QtI )(  at Tj *)1(   

and 0)( tI  at Tj* .  

From Eq.(11) we can calculate Q according to our 

assumptions, so we have: 
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The inventory level in two intervals of each cycle is 

derived by solving the differential equation subject to 

the initial conditions: 
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Now we could calculate the cost functions and the 

revenue functions to obtain the final profit function. 
 

3.4. Cost Functions 

Present value of holding cost of the inventory for the 

jth  nj 1  cycle is given by  
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Present value of purchasing cost for the jth  nj 1  

cycle is given by: 
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Present value of ordering cost for the jth  nj 1  

cycle is given by: 

 

.. ).1.( TjR

j eAPO                 (18) 

 

Screening cost occurs in the first interval of each cycle. 

We assume that this cost occurs in the middle of the 

interval
2


. So the estimate for the present value of 

screening cost for the jth  nj 1  cycle is given by: 
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Present value of entropy cost for the jth  nj 1  cycle 

is given by: 
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3.5. Revenue Functions 
Present value of perfect items sales revenue for the jth 

 nj 1  cycle is given by: 
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Present value of imperfect items sales revenue for the 

jthM  nj 1  cycle is given by: 
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3.6. Profit Function 

Present value of profit in the planning horizon (H) is: 
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3.7. Solution Methodology 

Since the inflation and discount rates are fuzzy 

numbers the objective function becomes fuzzy. So we 

can't use common methods to maximize it. We use 

both fuzzy numbers ranking and signed distance 

defuzzification to find optimal solution. The derived 

function is complicated so instead of finding optimal T, 

we find optimal solution for n, which is a discrete 

variable. Since the planning horizon is finite and 

known, H, we substitute T by 
n

H  so we have an 

objective with one variable, n. 

 

3.8.1. Fuzzy Numbers Ranking Methodology 

We assume that R
~

 is a trapezoidal fuzzy number so 

)(
~~

HPVPZ   becomes a fuzzy number too which is 

shown by  4321 ,,, zzzz . To find optimal value for n, 

we need to order fuzzy numbers for different values of 

n. We use method in [33] to rank the fuzzy numbers. 

Then the best value is selected as optimal solution. 

 
3.8. 2. Signed Distance Defuzzification Methodology 

We also apply a method of defuzzification, named the 

signed distance to find an estimation of the present 

value of total profit in planning horizon and compare 

the results with fuzzy ranking method’s results. The 

previous researches on fuzzy production/inventory 

problems (e.g., [34], [35], [36],[31]) often have used 

the centroid method. But there is some difficulty in 

using this method; one should first find the 

membership function of fuzzy total cost by using the 

extension principle, while the derivations are very 

complex and cumbersome, especially, for the case 

where the fuzzy number is located in the denominator. 

[14]showed that using the decomposition principle 

with the signed distance method can solve similar 

problems easier. The concept of signed distance 

utilized by [32] and [14] has summarized in section 2. 
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 After substituting all fuzzy terms with related signed 

distances, we have an estimate of the present value of 

total profit in planning horizon in the fuzzy sense, 

which is shown by Z. The resultant function is very 

complicated and difficult to solve by using common 

methods such as the first derivative. So we assign 

cardinal integers to n and estimate  10
~
,

~
ZdZ  and 

continue until we find a point in which the value of Z is 

less than the previous value obtained for Z. 

 

4. Numerical Example and Analysis 
An example is chosen to analyze the theoretical 

results. This example represents an inventory system 

where the commodity price at the beginning of a cycle 

is )0(P =100$, the market price 1100 P $, the 

holding cost dayunith /$1.0 , 4k , and the 

commodity unit cost is c=50$, selling price of 

imperfect quality items, v=90$, the annual screening 

rate b=120000, screening cost d=15$,percentage of 

imperfect items p=0.1,planning horizon H=10. The 

optimal values of the derived model are obtained for a 

range of different cost reductions over the cycle a=5, 

10 and 15, order costs A = 200, and different 

deterioration percentages θ = 1%, 5% and 10%. The 

results are summarized in Tables 1-7. 

Consider column 3 (θ=0.01) of table 1, it can be seen 

that as a is increasing the amount of 
*Q  and RVP

~
 

increase too. This profit increase arises from the 

increase in commodity flow due to competitive pricing 

(increasing the value of a). Now assume a=5, as θ 

increases from 0.01 to 0.1 
*n increases and

*Q reduces 

to counter high deterioration rate by purchasing less 

commodities each time and having fewer inventory 

levels.   

 
Tab. 1. Results for fuzzy model, )14.0,13.0,12.0,11.0(

~
R  

Θ 0.01 0.05 0.1 

a=5 PVR*
1 -2.6684e+005 -2.3043e+005 -2.3463e+005 

 PVR*
2 -1.1003e+005 -9.9255e+004 -1.0066e+005 

 PVR*
3 1.4290e+005 1.4900e+005 1.5803e+005 

 PVR*
4 6.1091e+005 6.2608e+005 6.5738e+005 

 Q* 535.6418 290.7511 203.0457 

 n* 1 2 3 

a=10 PVR*
1 -2.9181e+005 -2.5694e+005 -2.5350e+005 

 PVR*
2 -1.2113e+005 -1.1235e+005 -1.1561e+005 

 PVR*
3 1.4756e+005 1.6142e+005 1.5359e+005 

 PVR*
4 6.4150e+005 6.8733e+005 6.7526e+005 

 Q* 644.1935 350.8217 406.0914 

 n* 1 2 2 

a=15 PVR*
1 -3.1744e+005 -2.8574e+005 -2.8263e+005 

 PVR*
2 -1.3284e+005 -1.2736e+005 -1.3203e+005 

 PVR*
3 1.5178e+005 1.7284e+005 1.6281e+005 

 PVR*
4 6.7205e+005 7.4947e+005 7.3438e+005 

 Q* 752.7453 410.8922 477.4170 

 n* 1 2 2 

 
Tab. 2. Results for defuzzy model, )14.0,13.0,12.0,11.0(

~
R  

θ 0.01 0.05 0.1 

a=5 PVR*
 7.7952e+003 1.4227e+004 1.6074e+004 

 Q* 172.2476 88.4725 78.3228 

 n* 3 6 7 

In table 2 we have smaller lot size and more cycles 

than in fuzzy model and the present value of profit is 

also less than which in fuzzy model. In this case first 

signed distance method converts uncertain model to a 

deterministic one. Thus by solving the model we saw 

more cycles than the case in which we keep solve an 

uncertain model.    

Now compare the results in table 3 with results of table 

1 and table 2. When R is crisp the lot size is less than 

one in fuzzy and defuzzy models. It is a result of 

uncertainty, so larger lot sizes and higher inventory 

levels are recommended to deal with these 

uncertainties. In uncertain conditions, R can rise up to 

0.14 and thus we expect more revenue than in the case 

in which R is exactly equals to 0.12.   

 

In tables 4, 5, 6 and 7 results for different R
~

 are 

shown. As inflation rate increases, R
~

decreases and 

less cycles in each planning horizon and larger lot sizes 

in each cycle is advisable in either fuzzy or defuzzy 

models, but lot sizes are even larger in fuzzy one. High 

inflation rate and uncertainty makes it more profitable 

to buy more commodities in present and keep it for 

future, as we can see in tables 4-7. Tables 8 and 9 

shows more results for different rates of R and θ. 

Increasing R causes more cycles and increasing θ 

enlarges the lot size and simultaneously lowers profit. 

 
Tab. 3. Results for crisp mode, R=0.12 

θ 0.01 0.05 0.1 

a=5 PVR*
 2.5639e+004 2.0904e+004 1.9606e+004 

 Q* 42.4897 52.1386 53.5642 

 n* 12 10 10 

 

Tab. 4. Results for fuzzy model, )06.0,05.0,03.0,02.0(
~
R  

θ 0.01 0.05 0.1 

a=5 PVP1(H) -1.0247e+007 -2.6915e+006 -1.9062e+006 

 PVP2(H) -2.2987e+006 -1.2664e+006 -1.1679e+006 

 PVP3(H) 7.0237e+006 6.1480e+006 6.0389e+006 

 PVP4(H) 5.3417e+007 4.7010e+007 4.6297e+007 

 Q* 535.6418 669.5315 900.8251 

 n* 1 1 1 

 

Tab. 5. Results for defuzzy model, )06.0,05.0,03.0,02.0(
~
R  

θ 0.01 0.05 0.1 

a=5 PVR*
 2.3218e+004 6.2476e+004 6.3275e+004 

 Q* 535.6418 669.5315 334.7657 

 n* 1 1 2 

 

Tab. 6. Results for fuzzy model, )15.0,12.0,1.0,05.0(
~
R  

θ 0.01 0.05 0.1 

a=5 PVP1(H) -3.3350e+006 -8.7173e+005 -6.6822e+005 

 PVP2(H) -2.4619e+005 -2.1592e+005 -2.1701e+005 

 PVP3(H) 4.5498e+005 4.2136e+005 4.5530e+005 

 PVP4(H) 2.7898e+007 2.6340e+007 2.7729e+007 

 Q* 532.9365 669.5315 334.7657 

 n* 1 1 2 

 

Tab. 7. Results for defuzzy model, )15.0,12.0,1.0,05.0(
~
R  

θ 0.01 0.05 0.1 

a=5 PVR*
 7.1789e+004 9.9640e+004 1.1055e+005 

 Q* 260.6931 107.1284 92.5723 

 n* 2 5 6 
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5. Summary and Conclusions 
In this paper we has extended  the work of [4] by 

considering items with imperfect quality, not 

necessarily defective, where, upon the arrival of order 

lot, 100% screening process is performed and the items 

of imperfect quality are sold as a single batch and 

lower price, prior to receiving the next replenishment. 

Items are subject to deterioration in fuzzy inflationary 

conditions.  

A mathematical model has developed to determine the 

number of cycles in finite planning horizon which 

maximizes the present value of total revenue in 

planning horizon. Numerical examples has presented 

and results have indicated that as a increases the 

amount of 
*Q and RVP

~
increase too. This profit 

increase arises from the increase in commodity flow 

due to competitive pricing (increasing the value of a). 

Also as θ increases from 0.01 to 0.1,
*n increases and 

*Q  reduces in order to deal with high deterioration 

rate.  

We also showed that when R is crisp the lot size is less 

than one in fuzzy/defuzzy models. It is a result of 

uncertainty, so larger lot sizes and higher inventory 

levels are recommended to tolerate these uncertainties. 

In the other hand, as inflation rate increases, 

R
~

decreases and less cycles in each planning horizon 

and larger lot sizes in each cycle is advisable in either 

fuzzy or defuzzy models. Smaller lot size, more cycles 

and less present value of profit are obtained in defuzzy 

method in comparison with fuzzy method In uncertain 

conditions, R can rise up to 0.14 and thus we expect 

more revenue than in the case in which R is exactly 

equals to 0.12. High inflation rate and uncertainty 

makes it more profitable to buy more commodities in 

present and keep it for future. In this case, two factors 

(high inflation and deteriorating rate) play opposite 

roles, high inflation tries to increase inventory levels 

and purchases more commodities, in the same time 

deterioration rate tries to reduce inventory levels and 

buys less. So a trade of between these factors 

determines the best policy for planning horizon. 

 

Tab. 8. Results for fuzzy model, )21.0,19.0,18.0,16.0(
~
R  

0.05 0.01  θ 

1.0e+04 *0.7139    
1.0e+04 *0.8084 

1.0e+04 *0.8686 

1.0e+04 *1.0096 

1.0e+04 *0.7224    
1.0e+04 *0.8352 

1.0e+04 *0.9041 

1.0e+04 *1.0618 

PVR*1 
PVR*2 

PVR*3 

PVR*4 

a=20 

200.7559348 197.2592476  Q* 

4 4  n* 

 
Tab. 9. Results for fuzzy model, )3.0,28.0,25.0,24.0(

~
R  

0.05 0.01  θ 

1.0e+04 *1.3658    

1.0e+04 *1.4854 

1.0e+04 * 1.8826 

1.0e+04 *2.1837 

1.0e+04 *1.4358    

1.0e+04 *1.5623 

1.0e+04 *1.9813 

1.0e+04 *2.2981 

PVR*1 

PVR*2 

PVR*3 

PVR*4 

a=20 

158.2529453 154.6138546  Q* 

5 5  n* 

References 
[1] Karp, A., and Ronen, B., “Improving Shop Floor 

Control: an Entropy Model Approach”, International 

Journal of Production Research, Vol. 30 (4), 1992, 

pp.923–938. 

 

[2] Ronen, B., Karp, R., “An Information Entropy Approach 

to the Small-Lot Concept”, IEEE Trans. Eng. Manage, 

Vol. 41 (1),1994, pp. 89–92. 

 

[3] Bushuyev, S.D., Sochnev, S.V., “Entropy Measurement 

as a Project Control Tool”, International Journal of 

Production Research, Vol. 17 (6),1999, pp. 343–350. 

 

[4] Jaber, M.Y., Nuwayhid, R.Y., Rosen, M.A., “Price-

Driven Economic Order Systems From a 

Thermodynamic Point of View”, International Journal 

of Production Research, Vol. 42 (24), 2004, pp. 5167–

5184. 

 

[5] Ullmann, J.E., “White-Collar Productivity and Growth of 

Administrative Overhead”, Natl. Prod. Rev., Vol. 1(3), 

1982, pp. 290–300. 
 

[6] Crusoe, J., Schmelzle, G., Buttross, T., “Auditing JIT 

Implementation”, Int. Audit., Vol. 14 (4), 1992, pp. 21–

24. 
 

[7] Jaber, M.Y., Nuwayhid R.Y., Rosen M.A., “A 

Thermodynamic Approach to Modelling the Economic 

Order Quantity”, Applied Mathematical Modelling, 

Vol. 30(9), 2006, pp. 867–883. 
 

[8] Jaber, M.Y., “Lot Sizing with Permissible Delay in 

Payments and Entropy Cost”, Computer and Industrial 

Engineering, Vol. 52 (1), 2007, pp.78–88. 
 

[9] Jaber, M.Y., Bonney, M., Rosen, M.A., Moualek, I., 

“Entropic Order Quantity (EnOQ) Model for 

Deteriorating Items”, Applied Mathematical 

Modelling, Vol. 33, 2009, pp. 564–578. 
 

[10] Rosenblatt, M.J., Lee, H.L., “Economic Production 

Cycles with Imperfect Production Processes”, IIE 

Transactions, Vol. 18, 1986, pp. 48-55. 
 

[11] Schwaller, R.L., “EOQ Under Inspection Costs”, 

Production and Inventory Management, Vol. 3, 1988, 

pp. 22-29. 
 

[12] Zhang, X., Gerchak, Y., “Joint Lot Sizing and 

Inspection Policy in an EOQ Model with Random 

Yield”, IIE Transactions, Vol. 22(1), 1990, pp. 41-47. 
 

[13] Salameh, M.K., Jaber, M.Y., “Economic Production 

Quantity Model for Items with Imperfect Quality”, 

International Journal of Production Economics, Vol. 

64, 2000, pp. 59–64. 
 

[14] Chang, H.C., “An Application of Fuzzy Sets Theory to 

the EOQ Model with Imperfect Quality Items”, 

Computer and Operation Research, Vol. 31, 2004, pp. 

2079-2092. 
 

[15] Chung, K.J., Her, C.C., Lin, S.D., “A Two-Warehouse 

Inventory Model with Imperfect Quality Production 

Processes”, Computers and Industrial Engineering, 

Vol. 56, 2009, pp. 193-197. 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

5-
30

 ]
 

                               8 / 9

https://www.iust.ac.ir/ijieen/article-1-315-en.html


99           M. Ameli, A. Mirzazadeh & M. Akbarpour Shirazi        Entropic Economic Order Quantity Model for Items with ……  

 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  MMaarrcchh  22001133,,  VVooll..  2244,,  NNoo..  11  

[16] Jaber, M.Y., Goyal, S.K., Imran, M., “Economic 

Production Quantity Model for Items with Imperfect 

Quality Subject to Learning Effects” ,International 

Journal of Production Economics, Vol. 115, 2008, pp. 

143–150. 

 

[17] Lo, S.T., Wee, H.M., Huang, W.C., “An Integrated 

Production-Inventory Model with Imperfect Production 

Processes and Weibull Distribution Deterioration”, 

International Journal ofProduction Economics, Vol. 

106, 2007, pp. 248-260. 

 

[18] Buzacott, J.A., “Economic Order Quantities with 

Inflation”, Operational Research Quarterly, Vol. 

26,1975, pp. 553–558. 

 

[19] Misra, R.B., “A Note on Optimal Inventory Management 

Under Inflation”, Naval Research Logistics, Vol. 26, 

1979, pp. 161–165. 

 

[20] Padmanabhan, G., Vrat, P., “Analysis of Multi-Systems 

Under Resource Constraint, a Nonlinear Goal 

Programming Approach”, Engineering Cost and 

Production Management, Vol. 13, 1990, pp.104–112. 

 

[21] Datta, T.K., Pal, A.K., “Effects of Inflation and Time 

Value of Money on an Inventory Model with Linear 

Time Dependent Demand Rate and Shortages”, 

European Journal of Operational Research, Vol. 

52,1991, pp. 326–333. 

 

[22] Hariga, M.A., “Optimal EOQ Models for Deteriorating 

Items with Time-Varying Demand”, Journal of the 

Operational Research Society, Vol. 47, 1996, pp. 1228–

1246. 

 

[23] Hariga, M., Ben-Daya, M., “Optimal Time-Varying Lot-

Sizing Models Under Inflationary Conditions”, 

European Journal of Operational Research, Vol. 89, 

1996, pp. 313–325. 

 

[24] Horowitz, I., “EOQ and Inflation Uncertainty”, 

International Journal of Production Economics, Vol. 

65, 2000, pp. 217-224. 
 

[25] Chern, M.S., Yang, H.L., Teng, J.T., Papachristos, S., 

“Partial Backlogging Inventory Lot-Size Models for 

Deteriorating Items with Fluctuating Demand Under 

Inflation”, European Journal of Operational Research, 

Vol. 191, 2008, pp. 127–141. 
 

[26] Roy, A., Maiti, M.K., Kar, S., Maiti, M., “An Inventory 

Model for a Deteriorating Item with Displayed Stock 

Dependent Demand Uunder Fuzzy Inflation and Time 

Discounting Over a Random Planning Horizon”, 

Applied Mathematical Modeling, Vol. 33, 2009, pp. 

744–759. 
 

[27] Maity, A.K., Maiti, M., “A Numerical Approach to a 

Multi-Objective Optimal Inventory Control Problem 

for Deteriorating Multi-Items Under Fuzzy Inflation 

and Discounting”, Computers and Mathematics with 

Applications, Vol. 55, 2008, pp.1794–1807. 
 

[28] Mirzazadeh, A., SeyedEsfehani, M.M., FatemiGhomi, 

S.M.T., “An Inventory Model Under Uncertain 

Inflationary Conditions, Finite Production Rate and 

Inflation-Dependent Demand Rate for Deteriorating 

Items with Shortages”, International Journal of 

Systems Science, Vol. 41, 2009, pp. 21-31. 

 

[29] Mirzazadeh, A., “Effects of Variable Inflationary 

Conditions on an Inventory Model with Inflation-

Proportional Demand Rate”, Journal of Applied 

Sciences, Vol. 10(7), 2010, pp. 551 – 557. 

 

[30] Sarkar, B., Moon, I., “An EPQ Model with Inflation in 

an Imperfect Production System”, Applied 

Mathematics and Computation, Vol. 217, 2011, pp. 

6159-6167. 

 

[31] Yao, J.S., Chang, S.C., Su, J.S., “Fuzzy Inventory 

Without Backorder for Fuzzy Order Quantity and 

Fuzzy Total Demand Quantity”, Computers and 

Operations Research, Vol. 27, 2000, pp. 935–62. 

 

[32] Yao, J.s., Wu, K., “Ranking Fuzzy Numbers Based on 

Decomposition Principle and Signed Distance”, Fuzzy 

Sets and Systems, Vol. 116, 2000, pp. 275-288. 

 

[33] Buckley J.J., Jowers L.J., Monte Carlo Methods in 

Fuzzy Optimization, Springer, Berlin, 2008. 

 

[34] Chang, S.C., Yao, J.S., Lee, H.M., “Economic Reorder 

Point for Fuzzy Backorder Quantity”, European 

Journal of Operational Research, Vol. 109,1998, pp. 

183–202. 

 

[35] Lee, H.M., Yao, J.S., “Economic Production Quantity 

for Fuzzy Demand Quantity and Fuzzy Production 

Quantity”, European Journal of Operational Research, 

Vol. 109, 1998, pp. 203–11. 

 

[36] Lin, D.C., Yao, J.S., “Fuzzy Economic Production for 

Production Inventory”, Fuzzy Sets and Systems, Vol. 

111, 2000, pp. 465–95. 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

5-
30

 ]
 

Powered by TCPDF (www.tcpdf.org)

                               9 / 9

https://www.iust.ac.ir/ijieen/article-1-315-en.html
http://www.tcpdf.org

