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Abstract: Nowadays total joint replacements are widely used in the world, so in 
average 800,000 joint surgeries are done yearly only in Europe and North 
America. However implant loosening is and remains as the major issue of all 
implant failures and therefore causes revision surgery procedures. Studies and 
experiments have identified poor fixation of implants most likely is the main cause 
of long term implant failure and in this case the cement-implant interface cavities 
are very effective due to resultant stress concentration . In this study the theory of 
this problem, continuum and mathematical equations for an inhomogeneous 
material by using Eshelby’s equivalent inclusion method with a spherical void as a 
special type of inhomogenities is addressed and a new yield criterion with respect 
to the void’s volume fraction is derived and changes in material elasticity tensor 
concerning Mori-Tanaka’s theorem also determined, then by using finite element 
method and remeshing technique a macro scale cement-implant interface cavity is 
modeled and concerning the loss of strength due to void existence and the interface 
stress concentration, the crack initiation and propagation  phenomenon is 
numerically investigated with respect to different orthopedic cement material 
properties. The results show that crack propagates at the interface at constant 
stress and strain by elastoplastic material and it propagates in cement bulk by 
considering elastic material properties for cement that both could cause implant 
loosening even in very small void’s volume fractions in which there are no 
significant changes in cement yield stress and elasticity tensor according to 
analytical solution. But numerical simulation shows that when a homogenous 
cement structure is achieved via high vacuum mixing method, there is a uniform 
stress distribution in the cement structure and no stress concentration zone forms 
even at high stress levels and also there is no appropriate local site for crack 
initiation.

Keywords: mechanical loosening, implant, porous material, fracture, crack 
propagation, finite element

1. Introduction1
Nowadays Total Joint Replacements (TJR) are 

widely used in the world, so in average 800,000 joint 
surgeries are done yearly only in Europe and North 
America and implant loosening has the major 
contribution of all joint revision surgeries. Studies 
show that the poor fixation of implants is the main 
reason of long term implant failure and affect 
mechanical stability of joints. Regarding this subject, 
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orthopedic cement voids after transition of hardening 
phase have considerable influences [1].
The common way to mix the orthopedic cement is 
vacuum mixing which decreases the porosity of bone 
cement and cement-implant interface [2], [3], [4]. 
Several studies identified that the voids and cavities at 
the cement bulk cause the initiation and propagation of 
micro cracks lead to cement fracture. Fractography 
analyses show that cracks propagate more rapidly in 
fracture surfaces which contain larger voids [3]; 
therefore, reducing of porosity and eliminating the air 
bubbles are reasonable effort to improve the 
mechanical properties of acrylic bone cements [1], [2].
Voids and air bubbles make the cement-implant 
interface loosen at micro scale level, then the contact 
surface between bone and implant, in other words the 
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load bearing surface of bone and its ability to transfer 
the shear and tensile stresses will reduced and it is 
believed that separation of the stem-cement interface 
and fractures in the cement may initiate the initial loss 
of fixation of the implant [5], [6].
External loading, static or cyclic and/or monotonic or 
cumulative on surgical site when an inhomogeneity 
exists, causes stress concentration and initiates micro 
crack formation and growth; therefore, leads to fracture 
of material by fracture mechanics theories. Cracks will 
develop across the mating surfaces and after a while 
cause the mechanical loosening of implant.

2. Problem Formulation
Ductile failure mechanism which occurs in acrylic 

bone cements comprises void nucleation, void growth, 
and coalescence phenomenon, which the fracture plane 
is created by passing the last step and void coalescence. 
Void coalescence as the major consequences of last 
two stages highly depends on the state and magnitude 
of stress which defines the growth rate and also 
depends on strain hardening index and inter particle 
spacing [7], [8], [9].
Void formation causes internal separation in a 
homogeneous material. In engineering alloys voids are 
considered as the second phase of homogenous 
material called inhomogeneity just the same as void 
formation during the mixing process in orthopedic 
cements. According to this reason the void nucleation 
stage is eliminated and the strength of the material 
intrinsically reduces due to inter particle separation.
Generally inhomogeneities such as cavities, voids, 
inclusions, and dislocations affect the homogeneity of 
material and form specific stress and strain field around 
and inside the inhomogeneities, result in reduction of 
mechanical strength of materials. There is no unique 
and specific solution to confront with these problems 
and determine the stress, strain, and displacement 
fields around and inside the inhomogeneity i.e. an 
ellipsoidal void inside the homogeneous material can 
be considered as a very small crack and its influence in 
mechanical strength of the material can be modeled by 
the Griffith theory [10].

In this study by the general theory of inclusions and 
inhomogeneities and utilizing general expressions of 
elastic fields for given Eigen strain distributions, 
reduction of mechanical strength and the yield point 
due to presence of  a spherical void are assessed. Then 
by using finite element method, stress concentration of 
a micro pore at cement-implant interface under 
external loading is modeled and crack formation and 
propagation for different material types for a micro 
pore are investigated.
Eigen strain is a generic name given to non elastic 
strains and eigen stress is a generic name given to self 
equilibrated internal stresses caused by one or several 
of eigen strains in bodies which are free from any other 
external forces and surface tractions. When an eigen 
strain is prescribed in a finite subdomainΩ  in a 
homogeneous material D and it being zero in the 
matrixD−Ω , thenΩ called an inclusion and the 
elastic modulus of material are assumed to be
homogenous. If the subdomainΩ  in material D has 
elastic modulus different from those of matrix then Ω
called an inhomogeneity. It is important to say a 
material containing inhomogeneity is free from any 
stress fields unless a load is applied and on the other 
hand a material containing inclusions is subjected to an 
internal stress field (eigen stress) even if it is free from 
any external tractions [10].
Eshelby pointed that the stress disturbance in an 
applied stress due to presence of an inhomogeneity can 
be simulated by an eigen strain caused by inclusion, 
when the eigen strain is chosen properly and this 
equivalency called Equivalent Inclusion Method.
A fictitious inclusion introduced as a subdomainΩ  in 
domain D, then an eigen strain *

ijε  is given inΩ  and it 

is zero inD −Ω . Since *
ijε  is discontinuous on the 

boundary of domainΩ , some quantities may also be 
discontinuous on that boundary including the stress 
field which is continuous insideΩ  andD −Ω  but 
discontinuous at the interface between two domains, so 
the jump across the interface can be written as Eq. (1). 
(See [10])

* *( )
[ ] ( ) ( )

( )
kp

ij ij ij ijkl pqmn mn q l kl

N n
out in C C n n

D n
σ σ σ ε ε

 
= − = − + 

 
(1) 

 
Eq. (1) is useful for evaluating the stress just outside of 
the inclusion when the stress just inside the inclusion is 
known [1].
In this study an infinitely extended material with elastic 
modulus ijklC  is considered containing a spherical 

domainΩ  with elastic modulus *
ijklC  called 

inhomogeneity and the disturbance in applied stress 
caused by presence of this inhomogeneity is 
investigated. If the applied stress at infinity denoted 
by 0

ijσ , then the corresponding strain is as Eq. (2).

0 0 0
, ,

1 ( )
2ij i j j iu uε = + (2) 

And the Hook’s law can be written as Eq. (3) inside 
and outside the inhomogeneity.

0 * 0
, ,

0 0
, ,

( )

( )
ij ij ijkl k l k l

ij ij ijkl k l k l

C u u in

C u u in D

σ σ

σ σ

+ = + Ω

+ = + −Ω
(3) 

 

Using Eshelby’s equivalent inclusion method, the 
stress disturbance in an inhomogeneous material can be 
simulated by an arbitrary eigen strain caused by an 
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inclusion occupied the domainΩ  of body D, 
concerning the fact that there is no internal Eigen strain 
for the inhomogeneity, so first term of Eq. (3) can be 
written as Eq. (4).

0 0 *
, ,( )ij ij ijkl k l k l klC u u inσ σ ε+ = + − Ω (4) 

 
Then the necessary and sufficient condition for 
equivalency of stresses and strains insideΩ   is as Eq. 
(5) or Eq. (6).

* 0 0 *
, , , ,( ) ( )ijkl k l k l ijkl k l k l klC u u C u u ε+ = + − (5) 

 
* 0 0 *( ) ( )ijkl kl kl ijkl kl kl klC Cε ε ε ε ε+ = + − (6) 

 
By introducing Eshelby tensor ijklS , Eq. (8) yields 
from Eq. (6). 

*
, ,

1 ( )
2kl k l l k klmn mnu u Sε ε= + = (7) 

0 * 0 * 0 * *( ) ( )ij ij ijkl kl klmn mn ijkl kl klmn mn klC S C S inσ σ ε ε ε ε ε+ = + = + − Ω (8) 
 
Since both matrix and inhomogeneity are considered 
isotropic then ijklC  can be expressed in terms of Lame 
constants.

( )ijkl ij kl ik jl il jkC λδ δ µ δ δ δ δ= + + (9) 
That reforms Eq. (8) to Eq. (10).

0 0 * * 0 * *2 ( ) ( )ij ij ij ijmn mn ij ij kk kkmn mn kkS Sσ σ µ ε ε ε λδ ε ε ε+ = + − + + − (10)

Eq. (10) is used to determine the stress field inside the 
inclusion; hence all the included terms in Eq. (10) 

should be determined as well. Eq. (6) can be written as 
follow.

* 0 * 0 0 * 0 *2 ( ) ( ) 2 ( ) ( )ij ij ij kk kk ij ij ij ij kk kk kkµ ε ε λ δ ε ε µ ε ε ε λδ ε ε ε+ + + = + − + + − (11)

And by introducing deviatoric strains as mentioned in 
set of Eq. (12); Eq. (13) and Eq. (14) derived from Eq. 
(11).

0
0 0

*
* *

3

3

3

ij kk
ij ij

ij kk
ij ij

ij kk
ij ij

δ ε
ε ε

δ ε
ε ε

δ ε
ε ε

′ = −

′ = −

′ = −

(12)

* 0 0 *2 ( ) 2 ( )ij ij ij ij ijµ ε ε µ ε ε ε′ ′ ′ ′ ′+ = + − (13)

* 0 0 *( ) ( )kk kk kk kk kkk kε ε ε ε ε+ = + − (14)
Expressions for the Eshelby tensor of ellipsoidal 
inclusions are independent of material symmetry and 
properties of inclusions [11]. Expressions for the 
Eshelby tensor of spheroidal inclusions in an isotropic 
matrix are given in [10] (see Appendix A for Eshelby 
tensor of an ellipsoidal inclusion in isotropic matrix), 
therefore using permutation in Eq. (7) yields the 
following results.

* (1 )
3(1 )kk kk

νε ε
ν

+
=

−
(15)

Then,

* (8 10 )
15(1 )ij ij

νε ε
ν

−′ ′=
−

(16)

With the aid of this last result, it follows from Eq. (13) 
that:

0 *
*

*

15 ( )(1 )
[(5 7) (8 10 ) ]

ij
ij

ε µ µ ν
ε

ν µ ν µ
′ − −

′ =
− − −

(17)

Substituting Eq. (15) in Eq. (14) yields:

0 *
*

*

3 ( )(1 )
[(4 2) (1 ) ]

kk
kk

k k
k k

ε νε
ν ν

− −
=

− − +
(18)

In view of the fact that in this study a void is under 
consideration, so it is not needed to express material 
properties are denoted by a superscript asterisk *  . 
Eigen strain is determined by combination of two Eq. 
(17) and Eq. (18).

0 0
* 15 ( 1) ( 1)

(5 7) (4 2)
ij ij kk

ij

k
k

µ ν ε δ ν ε
ε

ν µ ν
′− −

= +
− −

(19)

Substituting Eigen strains tensor derived from Eq. (19) 
in Eq. (10), the fictitious stress field tensor inside the 
void is determined and substitution the result in Eq. (1) 
yields the stress field just outside of the void. 
In this analytical case study, a macro spherical void 
with radius of 500µ in a cube shape orthopedic cement 
bulk with equal dimensions of 5 mm under applied 
tension σ  in the 3x  direction is investigated. With the 
aid of Eq. (19) to calculate the Eigen strain field and 
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using Eq. (1), the stress tensor just outside of the void 
is determined. Principal axes and principal stresses are 
derived as shown in Eq. (20) & (21) and by assuming 
octahedral shear stress criterion  (See Eq. (22)), a yield 

point drop function with respect to void volume 
fraction (ξ ) is determined as shown in Eq.(25).
1 3 2 3( ) ( ) ( ) ( ) .out out out out Qσ σ σ σ σ− = − = (20)

Where 1 2 3, ,σ σ σ  are principal stresses and Q  is:

2 (5 2) 15(1 ) 3 (1 )
3 3 (2 1) (5 7) 2 ( 2 )(2 1)

Q
k k k
µ µ ν ν λµ ν

ν ν λ µ ν
 − − − −

+ + − = − − + − 
(21)

Using octahedral shear stress criterion, results;
1/ 22 2 2

1 2 2 3 3 1
1 ( ) ( ) ( )
3

2 .
3

oct

oct Q

τ σ σ σ σ σ σ

τ σ

 = − + − + − 

=

(22)

And:

0.47oct ypτ σ= (23)

These equations were derived under assumption that 
the inhomogeneities are dilutely dispersed in the matrix 
and do not feel any affects due to their neighbors, it 
means that they are loaded by the unperturbed applied 
stress or applied strain and accordingly. Moreover it is 
assumed that the inhomogeneities are dispersed in the 
matrix with volume fraction equal to the volume 
fraction of the matrix and it means a completely semi 
porous material, so these equations are independent of 
inhomogeneity volume fraction. But in reality they are 
not independent of the inclusion (inhomogeneity) 
volume fraction (ξ ), so for including ξ  in our 
calculation and determine a new yield criterion, an 
exponential curve fitting procedure is down in curve 
fitting toolbox of  MATLAB 7.1 software package and 
correlation between ξ  and Q  is derived as shown in 
Eq. (24).

.. bQ a e ξ= (24)
Where: a =1 & b= 0.8176, which fits the best for 
0≤ξ ≤0.5.
Then the new yield criterion will be defined as: 

*
(0.8176)

yp
yp e ξ

σ
σ = (25)

In reality, micro and macro pores are formed while 
mixing the orthopedic cement and remain within the 
hardened cement (see Fig. 1) and there are interactions 
between the voids when external loading is applied, so 
evaluating the stress disturbance and the strength 
reduction due void existence in a relatively porous 
medium by above mentioned equations are necessary 
but not sufficient, so changes in material elasticity also 
should be considered. 

Fig. 1. Macro and micro voids within the hardened 
cement

There are different approaches and approximation for 
behavior of materials with inclusion volume fractions 
more than a few percent and one suitable 
approximation is Mori-Tanaka-Type estimation 
theorem in which the overall Mori-Tanaka’s elasticity 
tensor is describe as [11]:

{ } 1* ( ) ( ) ( ) ( ) 1 ( ) ( )[( )( ( )) ] [ ]m i m m i m
ME E I E E S S I E E Eξ ξ

−−= − − − − + − (26)

Where can be easily modified for porous materials by 
letting (i) 0→E  to give:

1
* ( ) 1
, ( )

1
m

M porE E I I Sξ
ξ

−
− 

= + − − 
(27)

And this elasticity tensor should be applied as the 
material elasticity when the stress disturbance due to a 
void existence in relatively porous material with 

0.25ξ ≤  is under consideration. In this investigation, 
with regards to our problem a hemispherical interface 
void is considered and with respect to the dimensions 
of the physical model which previously mentioned, the 
void’s volume fraction is determined as 1.048 E-3 by 
the following formula.

i

i mξ Ω
=
Ω +Ω

(28)

Then by applying the new yield point criterion from 
Eq. (25), the new yield stress for the cement in this 
case is determined as * 109.9ypσ = MPa. It can be 
readily seen from the result that there is no significant 
and sensible difference between homogenous material 
yield stress and inhomogeneous one concerning current 
void size and calculated volume fraction. Obviously 
when the porosity and thus the void’s volume fraction 
increase, the yield stress of the material decreases as 
shown in Eq. (25). Moreover changes in material 
elasticity also with respect to current void size and 
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volume fraction should be investigated and as 
mentioned before the authors choose the Mori-
Tanaka’s theorem. According to Mori-Tanaka’s 
theorem, changes in elasticity tensor of a porous 

material are determined by Eq. (27) and applying it to 
our inhomogeneous material leads to following result.

*
M ,por

0.9978 0.0002 0.0002 0 0 0

0.0002 0.9978 0.0002 0 0 0

0.0002 0.0002 0.9978 0 0 0
200 06

0 0 0 0.9986 0 0

0 0 0 0 0.9986 0

0 0 0 0 0 0.9986

E

− −

− −

− −
= +

 
 
 
 
 
 
 
 
  

E
(29)

Above matrix shows that there are also no significant 
differences in elastic properties in both normal and 
shear direction between a homogenous and 
inhomogeneous material with current void size and the 
elastic properties are also in accordance with each 
other more than 99%. This analytical investigation 
shows that there are no significant differences between 
homogeneous cement and inhomogeneous one when 
only a single spherical macro void with radius of 500µ 
exists, but clinical and experimental observations and 
also fractography analyses show that the crack 
propagation and fracture occurred in cements which 
contain voids, pores and air bubbles and these two 
results are not in accordance with each other. So a 
numerical simulation is done to check whether the 
inhomogeneity/void existence affects the total strength 
of the material.

3. Numerical Method with Remeshing
In this study a linear incremental finite element 

method and an incremental crack simulation process by 
a hybrid software package FRANC2D is used for 
numerical solution which combines modeling, mesh 
generation, primary finite element analysis, and more 
important fracture mechanics. Via this software 
package the stress concentration at the cement-implant 
interface and moreover crack nucleation and 
propagation under external loading is investigated for 
both purely elastic and elastoplastic materials. The 
geometry used in the model is the cross sectional area 
of the idealized cylindrical cemented hip stem 
surrounded by cortical bone. For simplicity, a two 
dimensional micro scale FE model comprising cortical 
bone, cement, implant, and hemispherical interface 
void is considered as indicated with dashed line in Fig. 
2 and the gross model dimensions are chosen according 
to [12] and [13]. As shown in Fig. 2 the cement is 
bonded by peripheral protection of bone that does not 
allow excessive large deformation and this assumption 
should be considered in every two dimensional 
modeling of this region and ignoring this matter, leads 
to underestimation the results because of inadequate 
stiffness of revised joint. In this study, assuming this 
peripheral bonding is necessary because it can confine 
the unstable cavity growth and excessive strains in low 
stress levels. In order to model this peripheral bonding, 
another rectangular region with cortical bone properties 
is submodeled and glued to the original FE model 

Fig.3 (a). In FE model initial void radius 0R is 500µ
and the ratio of initial void radius to cement cell width 
is 0( ) 0.1R L =  and regardless of peripheral bonding 
layer’s width, the ratio of width to height of cement 
cell is ( ) 1L H = .

Fig. 2. Gross model dimensions and FE model 
region indicated by dashed line

Tab. 1. Material properties of FE model
Material Elastic Modulus 

(MPa)
Yield Stress 
(MPa)

Poisson’s 
Ratio

Implant
(Cobalt- chrome) ≈ 200000 - 0.3

Cortical Bone ≈ 20000 - 0.3
Cement
(PMMA) ≈ 2000 110 0.3

Cortical bone and implant (Cobalt-Chrome alloy) are 
considered homogeneous, isotropic and linearly elastic 
and orthopedic cement (PMMA) is also considered 
homogeneous and isotropic, but at first it is considered 
as a linear elastic material and secondly, nonlinear 
elastoplastic behavior with ( ) 0.055y Eσ =  is applied. 
The inhomogeneity (macro void) is modeled separately 
in the model. Material properties assigned to the model 
are mentioned in Table 1, cited in [14] and [15]. Model 
is mapped meshed with quadrilateral eight node 
isoparametric elements. By use of plane of symmetry 
the results can be extended to the left half of the model, 
hence symmetric boundary condition is applied to the 
left edge of the model, and right edge of the main 
model is protected by the peripheral bonding layer to 
limit the excessive large deformation and nodes at the 
lower edge are limited to zero displacement in 
both x and y directions. External loading is applied in 
form of axial tensile stresses five times more than 
cement’s yield stress (

2( ) 5yσ σ = ) in y direction on 
the upper edge of the model.
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Fig. 3. (a) FE mesh of model    (b) 1st principal stress under applied external loading

First principal stress is shown in Fig.3 (b) as a result of 
this type of external loading; stress concentration in the 
cement structure at the mating surface can be readily 
seen. The stress concentration can be interpreted from 
two different aspects; first, as discussed in previous 
part inhomogeneities including voids, air bubbles and 
cavities may reduce, although in a small amount, the 
total strength of material that cause crack nucleation 
and initiation, on the other hand, high stress levels due 
to cavity existence at site itself could cause crack 
formation. An incremental linear elastic fracture 
mechanics is used for numerical solution. Local 
damage and crack growth are modeled by an integrated 
remeshing technique to overcome convergence 
problem caused by mesh distortion. The crack 
simulation process is an incremental process where a 
series of steps is repeated for a progression of the 
cracked model. Each iteration in the process relies on 
previously computed results, and represents one crack 
configuration. 

4. Results
Two types of analyses have been done on this 

model depend on acrylic cement’s material properties 
during external loading and propagation paths were
compared with each other. As discussed before the 
stress concentration site is a reasonable region for 
crack nucleation which acts as test sample machining 
notch. So the first crack propagation path is defined at 
the cement-implant interface Fig.4. Moreover 
experiments show that the fracture originated from 
already existing cracks or surface (internal and 
external) discontinuities. Based on orthopedic cement 
material properties two analyses have been done, first 
considering purely elastic material and then an 
elastoplastic one. Cement’s material properties are also 
listed in Table.1, for first analysis only the Young’s 
modulus and Poisson’s ratio are used but for materially 
nonlinear analysis the elastic properties plus yield 
stress are used and kinematic hardening is also 
considered.

Fig. 4. 1st crack propagation path along the interface
(Singular elements after mesh modification are shown at crack tip)
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For purely elastic material, the primary crack path is 
defined as shown in Fig.4, mesh modification is done 
to refine mesh along the path and create singular 
elements at crack tip. The deformed mesh (Fig. 5(a)) 

and stress field (1st principal stress) in the model (Fig. 
5(b)) are obtained after loading and high stress levels at 
the crack tip can be seen that we will discuss about it 
later. 

Fig. 5. (a) Deformed mesh at 1st step of crack propagation   (b) 1st principal stress at 1st step of crack propagation

There are different theories to predict in which 
direction the crack moves on, such as Sigma-Theta 
Maximum theory which states that it will move in the 
direction of maximum circumferential stress around the 
crack tip when a critical value of stress is reached or G-
Theta Maximum theory that sates the crack will move 
in the direction of maximum energy release rate when 
a critical value of energy release rate is reached or The 
Minimum Strain Energy Density (S Minimum) theory 
which states that the crack will move in the direction 
where strain energy density is minimum when a critical 
value is reached. So this program automatically 
predicts in which direction the cracks move on and 

propagate. For the second step for purely elastic 
material this program predicts that the crack will 
moves on the path shown in Fig.6 (a). Automatically 
remeshing technique is applied to the model in which 
the values of field quantities in the old mesh were 
transferred to new mesh and then mesh modification is 
done to refine mesh and create singular elements at 
crack tip location Fig.6 (b). Again another analysis has 
been done and the deformed mesh and 1st principal 
stress contours obtained (Fig. 7). This procedure again 
continued up to 4 steps and the results are shown in 
Fig. 8) to Fig. 11 and final crack propagation path is as 
shown in Fig. 12. 

Fig. 6. (a) Propagation path at 2nd step          (b) Modified mesh with singular elements at crack tip
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Fig. 7. (a) Deformed mesh at 2nd propagation step   (b) 1st principal stress at 2nd propagation step

Fig. 8. (a) Propagation path at 3rd step          (b) Modified mesh with singular elements at crack tip

Fig. 9. (a) Deformed mesh at 3rd propagation step                 (b) 1st principal stress at 3rd propagation step
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Fig. 10. (a) Propagation path at 4th step   (b) Modified mesh with singular elements at crack tip

Fig. 11. (a) Deformed mesh at 4th propagation step             (b) 1st principal stress at 4th propagation step

Fig. 12. Total crack propagation path
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Fig. 13. Deformed mesh with elastoplastic material 
behavior before crack formation

By considering elastoplastic material properties for 
acrylic cement and assuming the initial separation (first 

crack propagation path) at the cement-implant mating 
surface, the initial deformed shape, predicted 
propagation path, the first and last crack development 
steps and also the principal stresses contours are shown 
in Fig. 13 to Fig. 18.

5. Discussion
The rate of crack growth is usually separated into 

two categories. 
One of those called stable crack growth is that 
propagates slowly with speed of e.g. 6.1 m/s (20 ft/s) 
and only propagate on application of an external load. 
The other category is fast growth with speed of e.g. 
915m/s (3000 ft/s) and these cracks can proceed 
without external loading if there is sufficient internal 
elastic stressing (such as residual stresses from heat 
treating or crack propagation in a tensile sample after 
necking), this is referred as unstable crack growth [16]. 
In this study, stable crack growth was investigated 
because of assuming continuous application of external 
tensile load on surgical site during crack propagation.

Fig. 14. (a) 1st principal stress at deformed state with 
elastoplastic material behavior before crack formation 

(b) 2nd principal stress at deformed state with elastoplastic)
material behavior before crack formation 

Fig. 15. Deformed mesh at 1st step of crack propagation with elastoplastic material behavior
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Fig. 16. (a) 1st principal stress at the 1st step of crack 
propagation with elastoplastic material behavior 

(b) 2nd principal stress at the 1st step of crack propagation 
with elastoplastic material behavior 

In first analysis when the bone cement is considered as 
purely elastic material, high stress levels can be seen at 
the crack tip in Fig. 5(b), Fig. 7(b), Fig. 9(b), and 
Fig.11(b). 
The stresses acting at the crack tip locally exceed the 
strength of material if an elastoplastic material were 
used same as which was done at the second analysis 
and a plastic zone would be noticeable in the cement 
bulk as shown in Fig. 16 and Fig.18. However with an 
elastic material, in spite of that the initial separation 
path is considered at the cement-implant mating 
surface as shown in Fig. 4, but the crack propagation 
path was deviated from the interface and developed in 
to the cement structure that is shown in Fig.12. 
Secondly when an elastoplastic property is used for 
cement behavior, the initial separation path again 
considered along the interface as shown in Fig.15, but 
at the next steps the crack automatically developed 
along the interface and did not deviate much from it 
(Fig. 17).

Considering elastoplastic behavior for the cement 
structure better describes the cement-implant interface 
separation phenomenon due to presence of yielded 
elements around the crack tip in the cement structure 
and also low stress levels beneath the separation path 
in the implant, those are shown in Fig. 16 and Fig. 18
in 1st and 2nd principal stresses contours.
The results show that the crack can propagates either in 
the cement bulk or at the cement-implant interface 
depend on assumed material behavior and both of them 
could cause implant mechanical loosening. Both 
patterns have been seen frequently in clinical 
observations but the fracture pattern not only depends 
on the assumed material behavior but also depends on 
the amount of porosity of the material and cavities’ 
volume fraction and moreover the interactions between 
the neighboring voids which may cause micro crack 
formation after transition of interface ligament necking
between two neighboring voids under excessive 
external loading (see [7], [8], and [9]).

Fig. 17. (a) Software predicted propagation path (b) Final deformed mesh

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
17

 ]
 

                            11 / 14

https://www.iust.ac.ir/ijieen/article-1-140-en.html


184 CCeemmeenntt--IImmppllaanntt IInntteerrffaaccee FFrraaccttuurree FFaaiilluurree bbyy CCrraacckk IInniittiiaattiioonn ……

Fig. 18. (a) 1st principal stress at the last deformed 
mesh with elastoplastic material behavior 

(b) 2nd principal stress at the last deformed mesh with 
elastoplastic material behavior 

Fig. 19. (a) Homogeneous model with purely elastic 
material behavior under same excessive external 

loading 

(b) Homogeneous model with elastoplastic material 
behavior under same excessive external loading 

6. Conclusion
In the first part, the analytical investigation shows 

that there are no significant differences between 
homogeneous cement and inhomogeneous one when 
only a single spherical micro void with radius of 500µ 
exists in the cement bulk, but clinical and experimental 
observations and also fractography analyses show that 
the crack propagation and fracture occurred in cements 
which contain voids, pores and air bubbles. These 
outcomes (analytical solution and experimental 
observations) were not in accordance with each other. 
So, to solve this paradox in low porosity materials, in 
which changes between homogeneous and 
inhomogeneous material properties are small enough, a 
numerical simulation is performed to evaluate stress 
concentration effect due to presence of a single void or 
dilutely dispersed voids.

As shown in numerical analysis, the stress 
concentrations due to presence of inhomogeneities 
including voids and cavities form an appropriate site 
for crack nucleation and stable crack growth under 
applied external loading that leads to cement fracture, 
but as studied in analytical solution, with current void 
size and its volume fraction there are no significant 
changes in material elasticity & yield stress and the 
differences between homogenous orthopedic cement 
and inhomogeneous one in both properties are less than 
one percent. So, it is concluded that the stress 
concentration due to irregular discontinuity in the 
material structure is more effective than its resultant 
strength reduction. E.g. the results from a 
homogeneous model (Fig. 19) show a uniform stress 
distribution in the cement structure with the range of 
0.1485E9 ~ 0.2871E9 N/m2 for 1st principal stresses of 
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elastoplastic material behavior, but when an 
inhomogeneity like a semi spherical macro void with 
radius of 500µ is considered at the interface, as 
modeled in this study, with same elastoplastic material 
behavior, the stresses in the cement structure rise up to 
0.1830E9 ~ 0.3409E9 N/m2 , and also a stress 
concentration zone forms in which the stresses are in 
the range of 0.3409E9 ~ 0.4988E9 N/m2 , which 
approximately are 2 times more than those in 
homogenous material.
So it is concluded that not only the inhomogeneities 
(i.e. voids and cavities) in the cement structure affect 
the material strength, but also they form stress 
concentration zones in the material structure. Even if 
the void’s volume fraction is small enough, as in this 
analysis, that does not affect much the material 
strength, but because of stress concentration and high 
local stress levels, a proper site for crack nucleation 
will be formed. High Vacuum Mixing helps to reduce 
the cement porosity and increases the strength of 
orthopedic cement and long term stability of cemented 
implants. It should be noted that, the fracture pattern in 
the cement structure not only determined by cement 
material properties but also depends on the amount of 
porosity of the material and interaction between the 
voids and also the size of the neighboring voids. 
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Nomenclature
ijklC Elastic modulus of infinitely extended material 
*
ijklC Elastic modulus of inhomogeneity 

( )D n Determinant of stiffness matrix
*
ME

Effective elasticity tensor by Mori-Tanaka 
estimation theorem

(m)E Matrix elasticity tensor
(i)E Inclusion elasticity tensor

I Identity matrix

k Bulk modulus
n Outward normal
( )kpN n Cofactor of stiffness matrix

ijklS Eshelby tensor

iu Displacement disturbance
0
,i ju Displacement gradient

ijδ Kroneckerδ
0
ijε Strain due to applied stress at infinity
*
ijε Eigen strain

λ Lame constant
µ Lame constant

ijσ Stress disturbance
0
ijσ Applied stress at infinity
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ν Poisson’s ratio

Ω i Volume of inclusion  

Ω m Volume of matrix

ξ Void (inhomogeneity) volume fraction

Expressions for Eshelby tensor of ellipsoidal inclusions 
in an isotropic matrix are given here.

Appendix A

1111 2222 3333

1122 2233 3311 1133 2211 3322

1212 2323 3131

7 5
15(1 )

5 1
15(1 )

4 5
15(1 )

S S S

S S S S S S

S S S

ν
ν

ν
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ν
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