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Abstract: In this paper, the combination of conduction with radiation into a 
semitransparent medium which includes absorption, emission and scattering has 
been investigated. In order to Study the conduction in medium, the Non-Fourier 
heat conduction has been applied. In this model there is a time delay between heat 
flux and temperature gradient. Also, in contrast with Fourier heat conduction, the 
speed of heat propagation is finite. The radiation transfer equation has been solved 
via 1P  approximate method. Also to solve the energy conservation equation and 
Non-Fourier heat conduction simultaneously, flux-splitting method has been 
applied. The results show that the transient temperature responses are oscillatory 
for Non-Fourier heat conduction. Also the Non-Fourier effect can be important 
when the thermal relaxation time of heat conduction is large. In the initial times, 
the difference of transient temperature responses between the Fourier and the Non-
Fourier heat conduction is large under this condition. For the laser-flash 
measurement of thermal diffusivity in semitransparent materials, omitting the Non-
Fourier effect can result in significant errors. 

 
Keywords: Non-Fourier heat conduction, single-scattering Albedo, absorption, emission, 
scattering, relaxation time, transient temperature response 

 
1. Introduction1 

 Combined conduction and radiation heat transfer 
have numerous applications in the area of laser 
processing of semiconductors, fire protection, 
manufacturing of glass, fibrous and foam insulation, 
crystal growth, etc. Therefore, it has been the subject of 
numerous investigations [1-6]. In the analysis of heat 
conduction involving extremely short times, high-rate 
change of temperature or heat flux, the classical heat 
conduction equation, Fourier's law, breaks down 
because the validity of infinite heat propagation speed 
is restricted.  
Several investigations have indicated that the finite 
heat propagation speed becomes dominant [7-11]. 
Therefore, the traditional heat diffusion equation is 
replaced with a hyperbolic equation that accounts for 
finite thermal propagation speed. The use of the 
hyperbolic equation removes the non-physical infinite 
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speed of propagation predicted by the classical 
parabolic heat conduction equation [12]. Ozisik and 
tzou [13] gave an excellent review on the research 
emphasizing engineering applications of the thermal 
wave theory. Yuen and Lee [14], Tang and Araki [15] 
analyzed the non-Fourier heat conduction in a solid 
subjected to periodic thermal disturbances. Glass and 
Ozisik [16-18] studied the non-Fourier effects on the 
transient temperature resulting from pulse heat flux in 
one-dimensional semi-infinite solid with linear or non-
linear boundary condition. Recently, the transient 
temperature response in semitransparent medium has 
evoked the wide interests of many researchers. Tan et 
al. [19-20] investigated the temperature response 
caused by a pulse or a step laser irradiation in 
semitransparent slabs with generalized boundary 
conditions. Andre and Degiovanni [21] studied the 
transient conduction- radiation heat transfer of non-
scattering glass specimen.  
Hahn et al. [22] applied the three-flux method to 
calculate the temperature response caused by laser 
irradiation in an absorbing, isotropic scattering coupled 
conduction and radiation heat transfer process in 
semitransparent materials.  
Spuckler and Siegel [23-24] used the finite difference 
method in combination with Green's function to solve 
the steady-state radiative-conductive heat transfer 
problems in one-dimensional semitransparent slabs. 
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Ratzel and Howell [25] concluded that for one 
dimensional planar problem, the p-approximation 
method yields result in close agreement with exact 
solutions. 
Due to the complexity of radiative heat transfer 
phenomenon and the numerical instability of 
hyperbolic system, the combined effect of non-Fourier 
heat conduction and radiation is rarely investigated. 
Glass et al. [26] examined combined conduction and 
radiation using non-Fourier law with hyperbolic heat 
conduction model in an absorbing and emitting 
medium. While the scattering effect was not taken into 
account in their investigation.  
Liu and Tan [27] studied the combined conductive and 
radiative in absorbing, emitting, and scattering 
medium. They used flux splitting and discrete ordinate 
methods to solve the hyperbolic heat conduction and 
the radiative transfer equations. 
The objective of this work is to analyze the non-
Fourier effect on the transient temperature response in 
semitransparent (emitting, absorbing and scattering) 
medium caused by laser pulse. The coupled conduction 
and radiation heat transfer in a one dimensional 
semitransparent slab with black boundaries is studied 
by numerical simulation, the hyperbolic heat 
conduction equation being solved by the flux splitting 
method and the radiative transfer equation being solved 
by the 1P approximation method. For the sake of 

analysis, the transient temperature response obtained 
from hyperbolic heat conduction equation is compared 
with those obtained from classical parabolic heat 
conduction equation. The influence of relating 
parameters, such as the pulse intensity, and the 
Relaxation time on the transient temperature response 
will be analyzed.  

 
2. Physical Model and Equations 

Here, the effects of presence of conduction and 
radiation have been investigated simultaneously in a 
slab (Fig. 1). We consider an absorbing, emitting and 
scattering, gray, one-dimensional semitransparent slab 
with black boundary surfaces initially at thermal 
equilibrium with surrounding. This slab is affected by 
laser pulse from left side for a definite time. Also it is 
in thermal exchanging with environment. By writing 
energy conservation equation for a slab element we 
have: 
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Cattaneo [28] and Vernotte [29] stated an improved 
model for Fourier conduction, that was known as Non-
Fourier heat conduction, as the following: 
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Fig. 1. Schematic of the physical model and 
coordinates 

 
Using Taylor series expansion, the first order 
approximation of Eq. (2) gives:  
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The boundary and initial conditions are given as 
follows: 
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(6) 

Where rT is the environment temperature, )(tf  is laser 

pulse intensity function and   is Stefan Bultezman�s 

coefficient. Both sides of the body are exchanging the 
radiation with environment and the left side is exposed 
to laser pulse. We consider the Laser pulse represented 
mathematically in the form: 
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Where pq laser is pulse intensity and pt  is the time 

duration of laser radiation. The equation of radiation 
transfer (RT) in an absorbing, emitting, scattering, 
gray, one-dimensional semitransparent slab with black 
boundaries can be written as: 
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With boundary conditions: 
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Where I is radiation intensity, w  is single-scattering 
Albdo, n  is refraction index of medium,   is 

extinction coefficient,   is scattering phase function 

and  Cos . Because both boundary surfaces are 

considered black, radiation equation is like Eq. (9). 
Non dimensional form of equations and boundary 
conditions will be become as the following (Eq.(10) to 
Eq(18)): 
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Boundary and initial conditions: 
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Laser pulse: 
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RT equation with boundary conditions: 
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Applied Non-dimensional parameters are presented in 
the appendix where� N �is called conduction to radiation 
coefficient. Eq. (10) and Eq. (11) are coupled together 
and form a group of non linear differential-integral 
equations.  

3. Method of Solution 
        Eq. (10) and Eq. (11) are coupled together and 
form a series of non linear equations. There are various 
methods to solve these both equations simultaneously. 
However, the flux splitting method has been applied 
here [30]. The aim in this method is finding the relation 
between flux and wave, because in the numerical 
solution, they (flux and wave) move at various 
directions. Vector form of Eq. (10) and Eq. (11) can be 
as the following [27]: 
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It is supposed that vector E (flux) has positive and 
negative components that are related to direction of 
signal propagation (thermal waves). Eq. (20) can 
become linear as the following: 
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Where  A  is the Jacobian matrix�and UE  /  is given 

as the following: 
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Because the equation is hyperbolic, a similarity 
transformation exists so that 
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Where    is diagonal matrix of real eigenvalues 

of  A , and  T is matrix of eigenvectors  A  and�   1T  

is the inverse matrix of  T :  
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Then reverse T matrix is determined as: 
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Positive and negative components of matrix are 
introduced as the following: 

�26� 
     
            11 







TTTT

AAA


 

Finally E is obtained as the following: 

�27�    UAUAEEE 
  

Eq� (19) can be written by using flux splitting method 
as the following: 
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Where E and E are related to positive and negative 
signal propagation direction. By applying backward 

and forward finite difference method for E and E , 
we have: 
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Finally, by replacing Eq. (28) in Eq. (29), we will have: 
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Where ∆î and ∆ô are the space and the time steps 
respectively. RT equation has been solved via P1 
approximate method. In this method, by applying a 
series of approximation (spherical harmonious 
phrases), radiation intensity (that is a function of place 
and direction) is separated to two distinct parts (as a 
series product of multiply of these two parts). By 
replacing these two parts in RT equation, finally, a 
group of partial differential equations are obtained. 
This method has been described completely in [31].  
In order to comparison, the non dimensional form of 
the Fourier heat conduction equation in an absorbing, 
emitting, scattering, gray, one - dimensional 
semitransparent slab with black boundaries is written 
as: 
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With boundary and initial conditions: 
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An implicit central-difference is used to solve the 
Fourier heat conduction equation. 
 

4. Results and Discussion 
        In this section, the obtained results from 
numerical solution are presented. The Non-Fourier heat 
conduction is solved by the flux-splitting method, and 
the radiation transfer equation is solved by P1 method. 
Also the scattering phase function,   5.01 , is 

used. In Non-Fourier heat conduction, the time step is 
610  and the numbers of nodes which have been 

selected by considering to [32] are 501. For Fourier 
heat conduction model, time step is given as 

6102 
 and the numbers of nodes which have been 

considered are 501. For homogeneous materials, such 
as pure liquids, gases and dielectric solids, the values 
of thermal relaxation time range vary from 1410  
to 610 , though the relaxation time values for 
heterogeneous solids are bigger than homogeneous 
ones [33]. To examine the accuracy of the results 
gained by the used method in this paper, the results in 
Fig. 2 have been compared with the once in [32]. The 
comparison shows a good conformity.  

 
Fig. 2. Thermal distribution inside the slab for 

several different times 
 
Fig. 3 to Fig. 5 show the transient temperature response 
in three points î=0, 0.5,1. As it is observed, 
temperature responses are oscillatory for Non-Fourier 
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heat conduction (in transient temperature response). 
When laser pulse is interrupted ( 2.0/ 

r ), a thermal 

reduction is occurred. At initial times there is a big 
difference between responses of Fourier and Non-
Fourier models. Thus, at the initial times (transient 
state), it is important to consider the Non-Fourier 

conduction model. But after passing time 9/ 

r , 

results of these two models approach to each other.Fig. 
3 shows the transient temperature response for left 
surface. It is observed that after heat flux interruption 
at time 2.0/ 



r , several thermal waves are created. 

The first wave is the wave (approximately in 
time 5.1/ 



r ) which was created from right side and 

reached to this point. The second wave is the wave 
(approximately in 3/ 

r ) which was created from left 

side and contacted to the right side of slab and returned 
again. The third wave is the wave which was created 
from right side surface and after three travels along the 
slab; it is contacted to the left surface. The speed of 
heat propagation in non dimensional form is 
approximately 14.14. Fig. 4 shows transient 
temperature response in the middle of the slab along 
time. It is observed that after heat flux interruption, 
there are several thermal waves. First wave 
(approximately at 8.0/ 

r ) is a wave which was 

formed by mixing of two thermal waves created from 
both sides of the slab which reached to each other at 
the middle of the body. Temperature of this wave is 
7.66. Also further waves are similar. Fig. 5 shows 
transient temperature response in right surface along 
time. It is observed that there are several thermal waves 
after heat flux interruption. First wave (approximately 
at 5.1/ 

r ) has been created from left side surface 

and has reached to this point. First thermal wave 
created at right side has non dimensional temperature 
equal to 4.27. But, the first thermal wave created at left 
side has non dimensional temperature equal to 3.98. 
Second thermal wave (approximately at 3/ 

r ) is 

the one which is created from right side and transferred 
to the left side and has returned to the right side again. 

Fig. 3. Transient temperature response in left surface 
5N , 1.0l

, 005.0
r , 001.0P

, 1n , 5.01 A , 5.0w , 2000PQ  

 
Fig. 4. Transient temperature response in middle of 

slab 
5N , 1.0l

, 005.0
r , 001.0P

, 1n , 5.01 A , 5.0w ,
2000PQ  

 
Fig. 5. Transient temperature response in right 

surface�
5N , 1.0l

, 005.0
r , 001.0P

, 1n , 5.01 A , 5.0w ,
2000PQ  

 

Fig. 6 shows the thermal distribution inside the slab for 
several different times in Non-Fourier heat conduction. 
As it is observed at 001.0 , two thermal waves are 
forming on two surface of slab. Since at this time the 
heat flux is interrupted, thermal wave moves inside the 
slab after that. At 002.0 , two waves, which were 
created in both sides of solid, move to each other with 
speed equal to 14.14 (at non dimensional form). At 

004.0 , these two waves reached to each other at 
the middle of slab (because they have equal speed) and 
form a stronger wave. At 006.0 , these two waves 
pass from each other and after some time they far away 
from each other and approach to the left and right 
surfaces. At 01.0  these two waves contact to two 
walls and their movement direction is conversed. 
Finally at 035.0 , wavy behavior of temperature 
distribution is lost and temperature of all internal points 
will become equal. The reason of creating these two 
thermal waves is the presence of the radiation inside 
the slab which helps to transfer the heat inside that and 
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results in the thermal variations of right surface from 
beginning. Here two points are remarkable, first, by 
passing time, the wave's amplitude is decreased and 
also it is observed that the created wave is stronger at 
left side surface, because this surface was subjected to 
the effect of heat flux. Fig. 7 shows thermal 
distribution inside slab for several different times at 
Fourier heat conduction. It is observed that with 
increasing of time to 001.0 , the temperature 
distribution diagram is moved upward. Therefore, 
temperature points inside the slab are raised. After heat 
flux interruption (at 001.0 ) by increasing time, 
thermal distribution diagram moves downward until 
the temperature of all points inside solid become equal. 
Totally, at Fourier model, thermal variation inside the 
slab is rapid (speed of heat propagation is infinite) and 
opposed of Non-Fourier model, the thermal variations 
don�t have wavy behavior. Also duration time to reach 

the thermal equilibrium is less in Fourier model.  
 

 
Fig. 6. Thermal distribution inside the slab for 

several different times  
(Non-Fourier heat conduction)  

5N , 1.0l
, 005.0


r

, 001.0P
, 1n , 5.01 A �

, 5.0w , 2000PQ  
 

 
Fig. 7. Thermal distribution inside slab for several 

different times (Fourier�heat�conduction) 
5N , 1.0l

, 001.0P , 1n , 5.01 A , 5.0w , 2000PQ  

Fig. 8 to Fig. 10 show the influences of thermal 
relaxation time of heat conduction on the non-Fourier 
effects of transient temperature responses for three 
points (î1= 0, 0.5, 1). It is observed that whatever 
relaxation time increases, the non-Fourier effects of 
transient temperature responses become more. 
Therefore the difference between the results of Fourier 
and Non-Fourier models becomes more and transient 
time is increased. Also, with increasing of the 
relaxation time, the time delay increases. Certainly, this 
matter is more obvious at the middle point. Another 
point is that by increasing the relaxation time, the 
speed of heat propagation will decrease. Speed of heat 
propagation at 0

r (in non- dimensional form) is 

infinite, at 001.0

r  is equal to 31.62 and at 

01.0

r  is equal to 10. Also it is seen that by 

increasing the relaxation time, the value of sudden fall 
becomes more (at 001.0 ) after thermal flux 
interruption. The reason of this matter is decreasing of 
heat propagation term (   / ) in Eq. (11). 
 

 
Fig. 8. the influences of thermal relaxation time on 
the transient Temperature responses (Left surface) 

5N , 1.0l
, 001.0P , 1n , 5.01 A , 5.0w , 2000PQ  

 

 
Fig. 9. the influences of thermal relaxation time on 

the transient Temperature responses  
(Middle of slab) 

5N , 1.0l
, 001.0P , 1n , 5.01 A , 5.0w , 2000PQ  
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Fig. 10. the influences of thermal relaxation time on 

the transient Temperature responses  
(Right surface) 

5N , 1.0l
, 001.0P , 1n , 5.01 A , 5.0w , 2000PQ  

 
Fig. 11 to Fig. 14 show the influences of laser pulse 
intensity on non-Fourier effects of transient 
temperature responses. It is observed that by increasing 
the laser pulse intensity, the non-Fourier behavior for 
both sides becomes more. Also with increasing of laser 
pulse intensity, thermal variation diagram becomes 
more uneven at Fourier model. Since the speed of heat 
propagation is equal for all states, then pQ variation 

effects on the thermal variations. Also whatever pQ -

increases, longer time will be taken to approach the 
results of Fourier and Non-Fourier model.  
 

 
Fig. 11. The influences of laser pulse intensity on 
transient temperature responses (Right surface) 

5N , 1.0l , 005.0
r , 001.0P , 1n , 5.01 A , 5.0w , 

100PQ  

 
Fig. 12. The influences of laser pulse intensity on 
transient temperature responses (Right surface) 

5N , 1.0l , 005.0
r , 001.0P , 1n , 5.01 A , 5.0w ,

1500PQ  

 
 

 
Fig. 13. The influences of laser pulse intensity on 
transient temperature responses (Left surface) 

5N , 1.0l , 005.0
r , 001.0P , 1n , 5.01 A , 5.0w ,

100PQ  

 
5. Conclusions 

       In this paper, effects of the Non-Fourier heat 
conduction on transient temperature responses in 
semitransparent medium with black boundary surface 
caused by laser pulse has been studied. The heat 
transfer in the slab is a compound of conduction and 
radiation which its equation has been solved 
numerically. The Radiation transfer equation is solved 
via the P1 method and the Non-Fourier heat conduction 
equation is solved via flux splitting method.  
Meanwhile, transient- temperature responses obtained 
from Non-Fourier heat conduction was compared with 
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Fourier conduction. By studying the results, it is seen 
that Non-Fourier conduction behavior is oscillating 
behavior. 

 
Fig. 14. The influences of laser pulse intensity on 
transient temperature responses (Left surface)�

5N , 1.0l , 005.0
r , 001.0P , 1n , 5.01 A , 5.0w ,

1500PQ  
 
At the initial times of laser pulse radiation, the 
difference of the results of Fourier and Non-Fourier 
heat conduction is bigger; therefore neglecting the 
Non-Fourier effects at the beginning times is incorrect. 
Also, by passing time, the Non-Fourier results are 
approached to the Fourier results. By becoming greater 
of laser pulse intensity and relaxation time the Non-
Fourier effects become more (the difference of the 
Fourier and the Non-Fourier becomes great) and 
omitting the Non-Fourier effect may result in 
significant errors. At Non-Fourier model, it is observed 
that two thermal waves created at both sides of the slab 
and move inside that. The reason of creation of the 
second wave is the presence of radiation inside the slab 
that helps the heat propagation inside the slab. 
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Appendix 
List of symbols 

PC      Specific heat, J/kg K 

f        Laser intensity function, W/m² 

F        Non-dimensional laser intensity, 
            424/ rTnfF   

I         Intensity of radiation, W/ m² sr 
I        Non-dimensional intensity of radiation, 

            2 4/ rI I n T 
  

k         Thermal conductivity, W/ m² K 
L         Thickness of Slab, m 
n         Refractive index of medium 

N        Conduction to radiation parameter,      
            2 2/ 4 rN k n T   

cq       Conduction heat flux, w/ m² 
rq       Radiation heat flux, w/ m² 

pq      Laser pulse intensity, w/ m² 

Q        Non dimensional heat flux, 

            2 2( )/4c r
rQ q q n T   

cQ      Non dimensional conduction heat flux,   

            2 2/ 4c c
rQ q n T  

rQ       Non dimensional radiation heat flux, 

            2 2/ 4r r
rQ q n T  

pQ       Non dimensional laser pulse intensity,  

            2 2/ 4p p rQ q n T  

pt        Time duration of laser pulse radiation, s 

trt        Heat conduction relaxation time of, s 

T         Temperature of medium, K 

rT        Temperature of environment, K 

x         Space coordinate, m 
 
Greek symbols 
        Thermal diffusivity, m²/s 

        Extinction coefficient, 1/m 

         Non dimensional temperature, rTT /  

        Direction cosine 

         Optical coordinate,  x   

        Density, Kg/ m³ 

        Stefan boltezman stant, W/ (m K²)² 

         Non dimensional time, t2      

r       Non dimensional thermal relaxation time, 

           2
r r  
     

         Scattering phase function 

w        Single scattering albedo 
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