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Abstract: The intention of this study is the analysis of thermal behavior of 
functionally graded beam (FGB). The distribution of material properties is imitated 
exponential function. For thermal loading the steady state of heat conduction with 
exponentially and hyperbolic variations through the thickness of FGB, is 
considered. With comparing of thermal behavior of both isotropic beam and FGB, 
it is appeared that the quality of temperature distribution plays very important part 
in thermal resultant distribution of stresses and strains for FGB. So that, for 
detecting the particular thermal behavior of FGB, the function of heat distribution 
must be same as function of material properties distribution. In addition, In the 
case of exponential distribution of heat with no mechanical loads, in spite of the 
fact that the bending is accrued, the neutral surface does not come into existence. 
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1. Introduction1 

Functionally graded materials (FGMs) have been 
researched and developed in many engineering fields 
that need to be super heat resistant, such as the outer 
wall and the engine parts of future space-planes. In 
FGMs, material properties vary continuously from one 
surface to the other, especially from metal to ceramic. 
From this continuous change in composition, FGMs 
can withstand high-temperature environments while 
maintain their structural integrity. Due to these 
advantages, various researches have been tried about 
the modeling and application of FGMs for plates and 
shells that subjected to thermal loads. Javaheri and 
Eslami derived the equilibrium and stability equations 
of a functionally graded rectangular plate under 
thermal loads, based on the classical plate theory. 
Buckling analysis of FGM plates under four types of 
thermal loads was carried out in closed-form solutions 
[1].  
Najafizadeh and Eslami analyzed the thermal buckling 
of FGM circular plates under three types of thermal 
loads. The nonlinear equilibrium and linear stability 
equations were derived using variation formulations 
[2]. Shen studied a post buckling analysis for a 
functionally graded cylindrical panel of finite length 
subjected to axial compression in thermal 
environments. Material properties were assumed to be 
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temperature dependent, and graded in the thickness 
direction according to a simple power law distribution. 
The governing equations were based on Reddy's higher 
order shear deformation shell theory with a von 
Karman�Donnell-type of kinematic nonlinearity and 
including thermal effects [3]. The thermal buckling 
behavior under uniform or non-uniform temperature 
rise was analyzed; however, the time-dependent 
temperature rise was not considered [4]. Kyung and 
Kim studied three-dimensional thermo-mechanical 
buckling analysis for functionally graded composite 
structures that composed of ceramic, functionally 
graded material (FGM), and metal layers. The finite 
element model is adopted by using an 18-node solid 
element to analyze more accurately the variation of 
material properties and temperature field in the 
thickness direction. For a time discretization, Crank�
Nicholson method is used [5]. 
Ravichandran examined the effects of the functional 
form of gradation including the presence and structural 
arrangement of monolithic Al2O3�Ni regions in 
combination with the graded region, on the thermal 
residual stresses, arising from the fabrication of a FGM 
system [6]. However, for functionally graded beams 
(FGB), related studies are very limited. Sankar 
established a functionally graded Euler�Bernoulli 
beam model to treat a static problem of a simply 
supported beam [7].  
Zhong and Yu presented exact solution for a cantilever 
FGB by considering it as an elasticity problem, the 
calculation involved is fairly cumbersome [8]. 
Chabraborty, et al. developed a new beam finite 
element to study the thermoelastic behavior of FGB 
[9]. Li, presented a unified approach for analyzing 
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FGB with the rotary inertia and shear deformation 
included. Then the free vibration of an FGB, where the 
dependence of the natural frequencies and mode shapes 
on the gradient index for a simply supported beam is 
given [10]. LI Yong-dong, et al. derived the Cauchy 
singular integral equation for the anti-plane fracture 
analysis of a functionally gradient material infinite 
strip with finite width, under the assumption that the 
shear modulus is an exponential function of the spatial 
coordinate [11]. Yang and Xiang investigated the static 
bending, free vibration, and dynamic response of 
monomorph, bimorph, and multimorph actuators made 
of functionally graded piezoelectric materials (FGPMs) 
under a combined thermal-electro-mechanical load by 
using the Timoshenko beam theory [12]. From the 
literature survey, it is seen that few studies have been 
made for an efficient discussion of the effect of 
temperature distribution on the thermal stresses and 
strains using Timoshenko beam theory for FGB. The 
objective of this paper is to present the responses� of 
FGB under two types of thermal loads; the steady state 
of heat conduction with exponentially and hyperbolic 
variations through the thickness of FGB.  
Firstly, the stability equations of beam will be derive 
by assuming thermal loading only based on the first 
order shear deformation theory (FSDT). Then the exact 
solution of the governing equations for FGB subjected 
to thermal load will be present. For verification of the 
procedure, The Euler�Bernoulli beam can be 
analytically reduced from the Timoshenko's beam 
theory.  
Afterwards, with comparing of thermal behavior of 
both isotropic beam and FGB subjected to two 
functions of heat distributions, we will be study the 
effect of the type of temperature distribution on the 
thermal resultant distribution of stresses and strains. 
For evidence of the thermal behavior of FGB, first the 
same as function of material properties distribution and 
next, differ from that will be consider for function of 
heat distribution. Finally, results of the thermo-
mechanical behavior of the FGB are presented and then 
conclusions are explained. 

 
2. Material Gradient of FGM Beams 
 The FGM can be produced by continuously 
varying the constituents of multi-phase materials in a 
predetermined profile. The most distinct features of an 
FGM are the non-uniform microstructures with 
continuously graded macro properties. 
An FGM can be defined by the variation in the volume 
fractions. Most researchers use the power-law function 
(P-FGM), exponential function (E-FGM), or sigmoid 
function (S-FGM) to describe the volume fractions 
[13]. In this study, properties distribution is defined by 
exponential function and method of problem solution 
can be extended for other type of distributions. 
Consider an elastic rectangular cross section beam. As 
shown in Fig.1, coordinates x and y define the plane of 
the beam, whereas the z-axis originated at the middle 
surface of the beam is in the thickness direction. 

 
Fig.1. Elastic rectangular cross section FGB 

 
Consider an E-FGB, with different exponential 
variations for distributions of thermal expansion, 
thermal conductivity and modulus of elasticity through 
the thickness direction of beam, respectively we have 
[1, 14]; 
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Where (.)1, (.)2 are the material properties in the z=-h/2, 
z=h/2 surfaces, respectively and the constants Aá, AK, 
AE, ù, â and ë can be obtained by boundary conditions 
(BCs). The kind of material properties distribution in 
the thickness direction of the E-FGB is plotted in Fig. 
2. 
 

3. Governing Equations 
In accordance with the FSDT, a point A in the 

FGB with a distance z to the middle surface will be 
moved to point A' after deformation (Fig.3). Therefore, 
the axial displacement at the point A with distance z 
from mid-surface (z=0) can be presented by [15]; 

 

yz
x

w
zuzxu 



 0),(                                      (2) 

 

Where u0 is the displacement at the middle surface and 
w is the transverse deformation, xw  and y  are the 

rotations of vertical line AB (Fig. 3) about Y-axis due 
to bending and shearing deformations, respectively and 
all of them are independent of z-direction in FSDT 
[15]. 
 

 
Fig.2. The Young's modulus distribution through the 

thickness direction of the E-FGB 
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Then strain in the x-direction as follows, 
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Based on the plane strain condition, stress-strain 
relation for an FGB that subjected to thermal load is 
[16]; 
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Where )(zxx ,  and  zT  are the axial stress on the 

surface with distance z from mid surface, the Poisson's 
ratio and temperature distribution along z-direction of 
beam, respectively. As mentioned before, Eq. (4-b) has 
three unknown terms, which are independent of z-
direction. These terms may be obtained by using the 
equilibrium equations and BCs. 
 

 
Fig.3. Axial, bending and shearing deformation 

characteristics of a beam according to FSDT 
 

4. Problem Solution 
4-1. Axial Stress 

The stress resultants per unit length of the middle 
surfaces are defined by integrating stresses along the 
thickness. Assuming the thermal loading only with 
distribution in z-direction. When the beam is in 
equilibrium, the axial resultant forces in the x-direction 
must be zero, i.e. 
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Where, b and l are the width and length of beam, 
respectively. Moreover, in the absence of mechanical 
loads, the resultant moments about Y-axis appears by 

thermal effect only (MTy). Then the equilibrium 
equation for resultant moments as follows, 
 

lxM

lxMMdzEI
x

w

yM

h

h yMTyzy



 






0;0

0;)(
2/

2/
)(2

2

                 (6) 

 
Where Iy that is the inertia moment and MTy are defined 
as follows [16]; 
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Moreover� MMy is presented the mechanical moment 
about Y-axis. Since there are three unknown terms in 
Eq. (4-b), we can provide the third equation with using 
BCs relation. The BCs of the simply supported FGM 
beam are;  
 

w=0, My=0; x=0, x=l                                                       (8-a) 
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Where My is the total moment acting on the beam 
about Y-axis. Then with collocation of Eq. (5), Eq. (6) 
and Eq. (8-b) the parameters  ,0u xw   and y  

would be arisen and upon substitution into Eq. (4-b) 
axial stress can be obtained. 
Consider conventional definitions for simplicity as 
follows, 
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Where By substitution Eq. (9-a), Eq. (9-b), Eq. (7) and 
Eq. (4-b) into Eq. (5), Eq. (6) and Eq. (8-b) we can set 
the equation system with the following form; 
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Then the coefficient C2 is directly obtained and for C1, 
C3 we have; 
 

)(

,

2
1200

1
2
11

2
0210001

3

2
120

2011
1

IIIII

IbIIIIIIbIIIII
C

III

IIII
C

y

TTyTyT

TT











           (11) 

 [
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
17

 ]
 

                               3 / 9

https://www.iust.ac.ir/ijieen/article-1-132-en.html


108                                               TThheerrmmaall  BBeehhaavviioorr  AAnnaallyyssiiss  ooff  tthhee  FFuunnccttiioonnaallllyy  GGrraaddeedd  TTiimmoosshheennkkoo''ss  BBeeaamm 

 

It is evidence that axial stress can be obtain from Eq. 
(4-b) by substituting for C1, C2, and C3 from Eq. (10) 
and Eq.(11) as follows; 
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4-2. Transverse Shear Stress 

Consider an element of a FGM rectangular cross 
section beam of the length dx, and the width, b, as 
illustrated in Fig. 4. If the temperature distribution is 
assumed to be T=T(z), the thermal bending takes place 
in the X-Z plane. 

 

 
Fig.4. Transverse shear stress in the beam 

 

The equilibrium equation for an element of the cross 
section of the FGB is: 
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Where, ôxz is the transverse shear stress. Rearranging 
the terms yields: 
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Substituting for óxx from Eq. (12), yields: 
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Tab. 1. Example of Material properties of  E-FGM beam [16] 
á(/°K×10-6) Melting point (°K) k(W/m°K) Cv(J/Kg°K) í E(GPa) ñ(Kg/m3) Material 

8.8 2323 30.1 775 0.3 393 3970 Al2O3 

13.3 1730 90.7 444 0.3 199.5 8900 Ni 

 
For FGB with simply supported ends the shear stress 
may be easily shown to be zero to causality of absent 
of second derivatives of yu ,0  and third derivative of 

w, while for FGB with fixed-simply supported ends 
lacking of shear stress is not accrued.  

 
5. Procedure Verification 

The Euler-Bernoulli beam theory is the special 
case of the beam theories. For verifying of mentioned 
method, we can ignore additional parameters of FSDT 
assumptions that compared with classical beam theory 
(CBT) and obtain same results.  
In the event that intend the isotropic classical beam set 
forth for discussion, the parameters C3 and ù, ë that 

presented for rotational deformation and non-isotropic 
properties, respectively, must be vanished. In addition, 
the Eq. (5) and Eq. (6) are satisfied incidentals to 
obtain the coefficients C1, C2.   
These considerations and proper definition for heat 
distribution will be eventuated to same results of stress 
field for isotropic classical beam as is presented in 
some texts [17]. 

6.Steady state Temperature Distribution 
6-1. Exponential Distribution of Temperature (E-
State) 

Assume the heat conduction is one-dimensional. If 
the exponential variation for coefficient of heat 
conduction through the thickness of E-FGB is 
considered as Eq. (1-b), the heat distribution in 
thickness direction, Te

(z), is; 
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Where constants AT

e, BT
e can be obtained from thermal 

BCs that are; 
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Then with substitution of Eq. (18) in Eq. (16), we have; 
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Finally with Eq. (12), Eq. (1-a) and Eq. (1-c), thermal 
stress can be obtained as follows; 
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Where, T0 is the stress free temperature. 
 
6-2. Hyperbola Distribution of Temperature (H-
State) 

To study the impression of the temperature 
distribution type in the quality of thermal resultants 
distribution (TRD) of stresses, the hyperbola 
distribution of temperature also is considered. 
Therefore, with solving of one problem for two states 
of heat distribution, the responses of beam under these 
two conditions were comparable. Consider the 
hyperbola distribution of temperature as, 
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Where the temperature of boundary surface at z= h/2 is 
T2= 300ºK and at z=-h/2 is zero. 
 

7. Numerical Example 
Consider an elastic rectangular cross section beam 

(Fig.1) with simply supported ends and dimensions 
b=h = 0.04(m). 
Two types of beam theories with two types of beam 
constructions are exposed to two states of temperature 
distributions for driving the TRD of stresses and 
strains. The determination of thermal stresses 
distributions is established by CBT and FSDT for 
isotropic beam (kind of Ni, will be named as A-beam) 
and by FSDT for E-FGB (will be named as B-beam) 
with material properties that is presented in Table 1 
[18]. 
If the temperature BCs are considered as follows: 
 

T0=0°K, T1=0°K, T2=300°K                                    (22) 
 
Where T0, T1 and T2 are indicated the temperature of 
stress free state, temperatures at surface z=-h/2 
(unmixed Ni) and surface z=h/2 (unmixed Al2O3), 
respectively. Moreover, with consideration of material 
properties of B-beam (Table 1), for exponential terms 
in Eq. (20) we have: 
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Then the Iy that is defined by Eq. (7), conventional 
definitions in Eq. (9-a) and E-state from Eq. (19) can 
be obtained as follows: 
 
Iy=2.133E-7                                                           (24-a) 
 

I0=4.07E-2, I1=9.144E-5, I2=5.518E-6, I0T =9.79E-5, 
I1T =6.026E-7 , I2T =4.06E-7                                (24-b) 
 

Te
(z)=1149.017-149.017e(-27.575 z+0.5515)               (24-c) 

 
Thus with substitution of Eq. (24-a) and Eq. (24-b) into 
Eq. (10) and Eq. (11), determination of C1, C2, and C3 
are established, so that: 
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                                    (25) 

 

Now, with consideration of structural BCs as; 
 

lxxw

l
x

x

w
u







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,0;0
2

;0                                     (26) 

 

determination of u0, w and ö are achieved. In the 
interim of this numerical example, for transverse 
deformation, w, we have, 
 

)(
2

7711.2 2xxlw 


                                               (27) 
 

On the other hand, since the beam is thin, in the event 
that; if problem assumptions are varied to A-beam, 
same results will be obtained for FSDT and CBT in E-
state (Table 2). Furthermore, in this numerical example 
the graphical results of H-state assumption will be 
presented for completion of discussion. 
 

8. Results 
8-1. Results for H-State 

Consider the H-state in thickness direction of a 
beam as shown in Fig. 5. Whereas, with supposing that 
both A-beam and B-beam are exposed to H-state in 
thickness direction, similar response for TRD of 
stresses is achieved (Fig. 6). Indeed, the H-state in the 
thickness direction of B-beam is not operable, because 
the function of heat distribution must be same as 
function of material properties distribution. From Fig. 
6 it is evidence that unlike material properties 
distribution, the kind of heat distribution is very 
affective in the quality of TRD of stresses. 
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Fig. 5. Hyperbola distribution of temperature along 

the thickness direction of a beam 
 

 
Fig.6. Non-dimensional TRD of stresses vs. 

thickness direction in H-state, dotted; A-beam, 
solid; B-beam 

 
8-2. Results for E-State 
  With considering the E-state in thickness direction 
of a beam (Fig. 7), the TRD of stresses in thickness 
direction for both A-beam and B-beam are symmetrical 
with respect to z = 0 surface of the beams (resembling 
to H-state). 
 

Fig. 8 is shown the TRD of stress in the both of them. 
It is clear that for both constructions of beam, TRD of 
stresses do not make any difference in these thermal 
BCs that is defined with Eq. (22). 
 

 
Fig.7. Exponentially distribution of heat in 

thickness direction of a beam 
 

 
Fig. 8. Non dimensional TRD of stresses vs. 

thickness in E-state, dot line; Timoshenko's A-
beam, cross; classical A-beam, solid line; B-beam 

(Ni-Al2O3) 

Tab. 2. Results for Timoshenko's beam (FSDT) and classical beam (CBT) in E-state 
I2T I1T I0T I2 I1 I0 C3 C2 C1  

5.2151E-7 5.2151E-7 4.6658E-4 5.33E-6 0 0.04 -2.3468 -2.4446 0.01166 FSDT 
5.2151E-7 ---̅ 4.6658E-4 5.33E-6 0 0.04 0 -0.09778 0.01166 CBT 

̅In CBT I1T is vanished. 

 
While, if with temperature increasing the new thermal 
BCs are defined as;  
 
T0=300ºK, T1=700ºK,T2=1000ºK                             (28) 
 
Afterwards, the differences between TRD of stresses 
for A-beam and B-beam are entirely revealed (Fig. 9). 
In spite of this difference between them, they have same 
sign (positive) for thermal stresses in whole of the 
thickness. Because when temperatures are increased, 
increasing in tensile stresses that is arise from end 
supports effect, is larger from increasing in compression 
stresses that is result of thermal effect. Furthermore, 
whit equality of the subtraction of T2 and T1 in the Eq. 

(22) and Eq. (28), increasing in the tensile stresses 
(arising from end supports effect) with no changing in 
the compression stresses (arising from thermal effect) is 
happen. 
 

9. Discussions 
  With separating the thermal responses of beams to 
two parts, the more analysis cases are available [16]. 
One part for explaining the thermal behavior of beam 
without any end supports (will be name as part A) and 
another part for representing the thermal behavior of 
beam with considering the end support influence (will 
be name as part B) when the beam is exposed to H-
state or E-state. Thus for these two parts with 
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considering the Eq. (20), the following phrases can be 
obtained; 
 

 
Fig. 9. Non dimensional TRD of stresses vs. 

thickness in E-state with high rate temperature, 
dotted; timoshenko A-beam, cross; classical A-

beam, solid; B-beam (Ni-Al2O3) 
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Where the ı T, İ T and ı *, �İ * are the stress and strain 
resultants of part A and part B, respectively. Then the 
total stresses and strains are as follows; 
 

T  
                                                        (30-a) 

 
T 


                                                           (30-b) 

 

Even now with Eq. (30-a) and Eq. (30-b) the 
distinctions of thermal behavior of A-beam and B-
beam can be exactly specified. 
In the H-state, Fig. 10 and Fig. 11 are shown the TRD 
of stresses and Fig. 12 and Fig. 13 are presented the 
TRD of strains for A-beam and B-beam, respectively.  
Just as evidence, the distribution quality of part A and 
part B of stresses yield the symmetrically distribution 
of total stress. Furthermore, tensile stress (positive) is 
accrued in the inner section of thickness (-0.3<z/h<0.3) 
and the compression stresses is yield in the outer 
section of thickness (z/h<-0.3 & z/h>0.3). Now 
consider a beam with exposing to external pressure 
load on the one of boundary surfaces (i.e. z/h=-0.5). 
After bending of beam in H-state, the accumulation of 
thermal stress and mechanical stress in z/h=-0.5 
surface is yield to increasing the coupling stresses and 

in the opposite side (z/h=0.5) decreasing of coupling 
stress is arisen. Therefore, in the H-state of thermal 
loading the outer surface of beam with bigger young 
modulus must be selected for subjecting to external 
pressure load. In the other hand, unlike the TRD of 
stresses, the TRD of strains is not symmetrical and 
after thermal bending the natural surface is appeared in 
z/h≈-0.325 with unsymmetrical final geometry for 
beam. 
 

 
Fig. 10. TRD of stresses (MPa) vs. thickness in H-

state for classical A-beam, dotted; stress resultants 
of part A (ıT), dotted-dash; stress resultants of part 

B (ı*), solid; total stresses (ı) 
 

 
Fig. 11. TRD of stresses (MPa) vs. thickness in H-

state for B-beam, dotted; stress resultants of part A 
(ıT), dotted-dash; stress resultants of part B (ı*), 

solid; total stresses (ı) 
 

 
Fig. 12. TRD of strains vs. thickness in H-state for 

classical A-beam, dotted; strain resultants of part A 
(İT), dotted-dash; strain resultants of part B (İ*), 

solid; total strains (İ) 
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When the B-beam is subjected to E-state, with thermal 
BCs corresponding to Eq. (22), TRD of stresses and 
strains would be as Fig. 14 and Fig. 15, respectively. 
According to them, an important point can be achieved 
that the neutral surface is vanished. In the other word, 
both the thermal stress and thermal strain are not 
contemporaneously equal to zero, and the thermal 
strains are always positive (tension mode) along 
thickness direction.  
Furthermore, similar to H-state, the distribution quality 
of part A and part B of stresses yield the symmetrically 
distribution of total stress. Moreover, on the contrary to 
H-state, tensile stress (positive) is accrued in the outer 
section of thickness (z/h<-0.3 & z/h>0.3) and the 
compression stresses is yield in the inner section (-
0.3<z/h<0.3). Now consider a beam with subjecting to 
external pressure load on the one of boundary surfaces 
(i.e. z/h=-0.5). After bending of beam in E-state, the 
accumulation of thermal stress and mechanical stress in 
z/h=-0.5 surface is yield to decreasing the coupling 
stresses and in the reverse side (z/h=0.5) the coupling 
stresses will be increased. Therefore, in the E-state for 
improving of beam responses, the outer surface of 
beam with smaller young's modulus must be selected 
for subjecting to external pressure load. 
 

 
Fig. 13. TRD of strains vs. thickness in H-state for 

B-beam, dotted; strain resultants of part A (İT), 
dotted-dash; strain resultants of part B (İ*), solid; 

total strains (İ) 
 

 
Fig. 14. TRD of stresses (MPa) vs. thickness in E-

state for B-beam, dotted; stress resultants of part A 
(ıT), dotted-dash; stress resultants of part B (ı*), 

solid; total stresses (ı) 

 
Fig. 15  TRD of strains vs. thickness in E-state for 
B-beam, dotted; strain resultants of part A (İT), 

dotted-dash; strain resultants of part B (İ*), solid; 
total strains (İ) 

 
10. Thermo-Mechanical Analysis 

       Consider the B-beam subjected to both external 
pressure load2 on the one of boundary surfaces (i.e. 
z/h=-0.5) and E-state of thermal loading. Fig. 16 is 
comprised the superposition of thermal and mechanical 
stresses along the z-direction of B-beam. 
 

 
Fig. 16. Non dimensional stresses distribution vs. 

thickness for temperature boundary condition 
according to Eq.29 at the B-beam as exposed to 

thermo-mechanical load (E-state & External 
pressure on z/h=0.5), solid(right hand); thermal 
stresses, dotted(left hand); mechanical stresses, 

solid(left hand); total stresses 
 

It is seen that in the outer section of B-beam thickness 
the thermal stresses is always positive (tensile 
stresses). Therefore, the summation of thermo-
mechanical stresses is caused to improving the state of 
stress distribution with decreasing the compression 
stresses on the z/h=-0.5 surface. In the other hand, 
because of positive mechanical stress on the z/h=0.5 
surface, increasing the total stress is appeared. Where 
as, in lower temperatures, that is caused the thermal 
stresses smaller than mechanical stresses, this 
increment is not considerable. Moreover, according to 
Fig.9, in higher temperatures the stresses distribution 
curve have two sections, one with smaller amount of 

                                                 
2�For details, see [15]. 
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slope that is appeared in larger section of thickness 
(section AB in Fig. 9) and another with larger amount 
of slope in smaller section (section BC in Fig. 9). 

 
11. Conclusions 

        Some apposite conclusions can be demonstrated 
from this study as fallows; 
 The quality of temperature distribution plays very 

important part in thermal resultant distribution of 
stresses for E-FGB. In the other words, for 
appearing the particular thermal behavior of FGB, 
the function of heat distribution must be same as 
function of material properties distribution. With 
supposing the hyperbola temperature distribution, it 
is no difference between thermal responses of 
isotropic beam and FGB. 

 The thermal resultant distribution of stresses in the 
E-FGB with exponentially temperature distribution 
is on the contrary when compared with hyperbola 
temperature distribution. That means, in the outer 
sections of thickness the tensile stresses and in the 
inner sections of that the compression stresses is 
accrued. 

 With temperature increasing in the exponentially 
temperature distribution state, the thermal stresses 
would gradually be as tensile stresses (positive) 
through the whole of thickness. Until, on the whole 
points of thickness direction the positive stresses is 
merely arisen. 

 When the FGB is coincided to both external 
pressure load on the one of boundary surfaces and 
exponentially heat distribution with high 
temperature rate, for improving of total stresses 
distribution, the mechanical load must be applied 
on the side of thickness with smaller slope of 
thermal stresses distribution curve along of 
thickness. 

 In lower temperature rate of exponentially heat 
distribution as the thermal stresses distribution is 
symmetrically respect to mid surface of FGB 
thickness, if it is also exposed to external pressure 
load on the one of boundary surfaces, for 
improving of total stresses distribution, the 
mechanical load must be applied on the side of 
thickness with weaker material properties. 

 In the case of exponential distribution of thermal 
loading with no mechanical loads, in spite of the 
fact that the bending is accrued, the neutral surface 
does not come into existence.  
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