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ABSTRACT 
The present work addresses Inventory-Routing Rescheduling Problem (IRRP) in case of possible 
changes in the execution time of pre-planned scheduling of an Inventory-Routing Problem (IRP). Due 
to the complexity of the process of departing from one pre-planned scheduling IRP to a rescheduling 
IRP, a decision-support tool was devised in this study to help decision-makers. This complexity derives 
from the changes occurring in an agreed-upon schedule including the used capacity of the vehicle, 
total distance, and other factors that need a re-agreement negotiation, which directly relates to the 
agreed-upon costs, especially when a carrier contractor is responsible for the distribution of goods 
between customers. Although one may want to stick to the pre-planned scheduling, the changes in 
predicted data of the problem at the time of execution require a new optimized solution. The proposed 
approach applies mathematical modeling to the optimization of the rescheduled problem and conducts 
sensitivity analysis to study the effect of the adjustment of different variables (carried load, distance, 
etc.).   
 
KEYWORDS: Inventory-routing rescheduling problem; Decision support system; Rescheduling. 
 
 

1. Introduction1 
To find a solution to the classical Inventory-
Routing Problem (IRP), it is assumed that all 
parameters of the problem including available 
vehicle capacity, customer’s locations, demand, 
etc.  are deterministic and known. In practice, a 
planner or Decision-Maker (DM) may come to 
recognize some parameters sooner and realize the 
significance of some other parameters at some 
time in the future. Given that the final parameters 
of a problem are revealed, it is reasonable to have 
pre-planned scheduling based on known data and 
the predicted data for unrevealed parameters to 
avoid high costs of future planning. It is 
sometimes mandatory to do so, especially when 
the carrier contractor is responsible for 
distributing goods between customers. One needs 
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to know the planned schedule and have enough 
time before going through any price quotation 
and pre-agreement. A common solution to this 
problem is to determine a long-term schedule, 
henceforward Master Schedule (MS), which 
serves as a long-term guiding schedule over a 
certain period of time in which multiple 
deliveries are made [1]. MS works as a timely 
plan for setting any pre-agreement between the 
carrier contractor and the distribution manager 
(decision maker). In the course of revealing the 
real data of the problem, the MS may not be 
feasible for DM; therefore, to keep it feasible, the 
problem needs to be resolved. If a new solution 
does not match MS and it considerably deviates 
from it, the pre-agreement should be 
renegotiated. Although the carrier contractor 
wants to stick to MS and any deviation from it is 
unfavorable, the changes in the predicted data of 
the problem at the time of execution need a new 
optimized solution. A new agreement based on a 
new schedule includes extra cost for carrier 
contractor, which should be paid by DM. It is 
evident that while lower deviation leads to less 
carrier contractor charges, greater deviation 
incurs more charging costs for DM. In 
negotiation, DM goes through a complex 
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decision-making process to keep a balance 
between the rescheduling cost and MS cost. 
Herein, decision support tools are required to 
facilitate this process.  
The introduction of IRP dates back to the 
referenced paper [2] in which only transportation 
costs were included, demand was stochastic, and 
customer inventory levels must be met. 
Henceforth, a number of studies have 
investigated different variants of the problem. For 
more details and reviewing related published 
studies, the interested readers refer to Andersson, 
Hoff [3] and [4]. To the best of our knowledge, 
the literature on rescheduling strategies that take 
into account the deviation costs in IRP is limited 
in scope. However, on the vehicle routing 
problem, some authors studied the deviation costs 
to a greater extent. [1] studied the Vehicle Re-
scheduling Problem (VRSP) in order to find a 
new schedule that minimized not only the total 
traveling costs but also the costs of deviating 
from the original schedule. Therefore, a 
mathematical programming formulation of the 
rescheduling problem was presented and a 
heuristic solution method was referred to as a 
two-phase heuristic. Usually, rescheduling is 
mainly considered in conjunction with designing 
a master schedule. As a rescheduling method, the 
master schedule is designed before knowing the 
demand such that the expected costs incurred 

after rescheduling are minimized. Bertsimas [5] 
used a master schedule until it returns to the 
depo. Afterwards, it resumes its journey from the 
last visited customers. Groër, Golden [6] 
considered the rescheduling in such a way that 
some companies would want their drivers to 
develop relationships with customers on a route 
and have the same drivers visit the same 
customers at roughly the same time each day that 
they need service.  
The problem under study is very close to IRP 
when the demand is stochastic or dynamic. The 
majority of researchers have considered the effect 
of these uncertainties only on demand [3], [7]; 
nevertheless, in some rare cases, uncertainty of 
the other parameters of IRP such as the traveling 
time [8] and purchase cost [9] has been 
considered. To clarify this uncertainty in IRP 
even more, it is worth noticing that IRP is 
classified as either deterministic or stochastic due 
mostly to the time of knowing the demand 
information. In the deterministic IRP, demand is 
fully available for the decision-maker at the 
beginning of the planning horizon; however, in 
stochastic IRP, he knows its probability 
distribution. The Dynamic IRP (DIRP) is a very 
close extension of the Stochastic IRP (SIRP), in 
which the demand is not fully known in advance 
and is gradually revealed over time [7]. 

 

 
Fig. 1. Proposed decision support system structure for IRRP 

 
This study investigates an IRRP problem with a 
single-item, single-vehicle, multi-period, one-to-
many two-echelon IRP. A mathematical model of 
the rescheduling problem was also introduced to 
penalize the deviation from the MS. 
In addition, a Decision Support Tool (DST) was 
proposed that offered an appropriate adjustment 
to penalty coefficients through mathematical 
modeling that would assist DM in negotiation 
with a carrier contractor to go through a new 
agreement. To this end, this study considered a 

master schedule for IRP with the customers’ 
mean predicted demand, which was known in 
advance, and proposed a scheduling 
mathematical modeling for IRP when the real 
demand was revealed prior to the execution of 
goods distribution.  
The objective function of the proposed model 
was to minimize all costs included in the IRP 
plus the cost of deviation from the master plan. 
Furthermore, this study considered the cost of 
delivery as a step cost function that seemed more 

Optimization 
model 

Database 

Carrier contractor (CC) 

User interface 
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practical while considering rescheduling. Since 
the rescheduling problem included some price 
negotiations based on the master schedule, 
especially when the delivery was outsourced to a 
carrier contractor, devising a decision support 
tool to see how IRRP conformed to IRP master 
schedule would be beneficial for decision-
makers.  
The sections of the present research are as 
follows. In Section 2, the relevant research 
conducted is reviewed. In Section  0, a decision 
support tool including a mathematical 
formulation as Mixed Integer Programming for 
IRRP is proposed. In Section  2, numerical 
experiments are provided. Finally, Section 5 
concludes the study. 
 
 
 

2. Solution Approach 
In this section, a proposed solution approach to 
IRRP is introduced and discussed. The 
architecture of the proposed DSS approach is 
shown in Fig. 1. The system includes a Database 
that provides all necessary data of customers’ 
demands and locations, warehouses and available 
vehicle capacity of carrier contractor, all cost-
related parameters, etc. While the data of the 
database are partly static, the rest are dynamic, 
making it more relevant to the data collected 
from CC. The optimization model comprises a 
mathematical programming model for IRRP that 
receives its data from both database and user and 
offers him/her the optimized solution. The user 
interface is the final part of the system that 
directly supports the process of the user’s 
decision-making. 
 

2.1. Mathematical programming model for IRRP 
In the following, the concepts applied to the problem modeling are elaborated.  
Sets & 
indexes 

Description 

ܱ Vendor’s node; ܱ = {0} 
ܸᇱ Set of nodes including customers; 	ܸᇱ = {1,… , ݊} 
ܸ Set of nodes including vendors and customers; ܸ = ܸᇱ ∪ ܱ = {0,1,… , ݊} 
ܶ Planning horizon; 	ܶ = {1,… ,    {	
,ݐ ;s Index of each time period,ݐ ݏ ∈ ܶ 
݅, ݆ Index of each node; ݅, ݆ ∈ ܸ 
ܣ ;Set of arcs ܣ = {(݅, ݆): ݆݅ ∈ ܸ, ݅ ≠ ݆} 
ܵ Set of steps in the cost rate step function, s = 1,..., NS, where s denotes the 

corresponding indices. 
 Set of steps in the cost rate step function, s = 1,..., NK, where k denotes the ܭ

corresponding indices. 
  
Parameter
s 

Description 

 ݅  Maximum capacity of customerܥ
݁  Euclidean distance from vertex ݅ to ݆, (݅, ݆) ∈  ܣ
ܾ  Unit cost of traveling from vertex ݅ to ݆, (݅, ݆) ∈  ܣ
݊ Numbers of customers  
 Number of periods on the planning horizon 
݀௧ Demand rate of customer ݅ in period ݐ  
ܳ Vehicle capacity  
ℎ Unit inventory holding costs of vendor 
ℎ Unit inventory holding costs of customer ݅ 
π௧ Total load carried by vehicle in period 	ݐ	 ∈ ܶ  in master schedule 
ߛ  Load variation breakpoint ݇ ∈  ܭ
,ଵܯ  ଶ Large numbersܯ
݅  Inventory level at the vertexܫ	 ∈ ܸ at the beginning of the planning horizon 
݂
௧  Unit cost of rout deviation corresponding to vertex ݅ to ݆  

݉  Unit cost of load deviation in step k 
ܼ௧  Equal to 1 if customer j immediately follows customer i on the route of the supplier’s 

vehicle in period t in master schedule; otherwise, equal to 0 
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Min  IRRP = 

	ℎ
௧∈ఁ

௧ܫ +ℎ
௧∈ఁ

௧ܫ

∈ᇲ
+ܾ ݁

௧∈ఁ
ܺ
௧

∈∈

+ ݂
௧

ܻ
௧

௧∈ఁ∈

+݉ ܰ
௧

∈௧∈ఁ

 

 s.t. 

௧ܫ (1) = ௧ିଵܫ +ܴ௧ − ௧ݍ

∈ᇲ
ݐ			, ∈ ܶ 

௧ܫ (2) ≥ 0	, ݐ ∈ ܶ 
ܫ (3)

௧ = ܫ
௧ିଵ + ݍ

௧ − ݀
௧ ,			݅ ∈ ܸᇱ, ݐ ∈ ܶ 

௧ܫ (4) ≥ 0,			݅ ∈ ܸᇱ , ݐ ∈ ܶ 
ܫ (5)

௧ ≤ ܥ 	, ݅ ∈ ܸᇱ, ݐ ∈ ܶ 
௧ݍ (6) ≤ ܥ − ݅				,		௧ିଵܫ ∈ ܸᇱ, ݐ ∈ ܶ 

ݍ (7)
௧ ≤ ܥ ܺ

௧

∈

,							݅ ∈ ܸᇱ, ݐ ∈ ܶ 

(8)  ௧ݍ ≤ ܳ
∈ᇲ

ݐ			,	 ∈ ܶ 

(9)  ܺ
௧

∈

= ܺ
௧

∈

, ݆ ∈ ܸ, ݐ ∈ ܶ 

(10)  ܺ
௧

∈

≤ ݐ					,	1 ∈ ܶ 

(11) ݃
௧ − ݃

௧ + ܳ ܺ
௧ ≤ ܳ − ݍ

௧  ,    ݅ ∈ ܸᇱ, ݆ ∈ ܸᇱ, ݐ ∈ ܶ  
௧ݍ (12) ≤ ݃

௧ ≤ ܳ , 	݅ ∈ ܸᇱ, ݐ ∈ ܶ 
(13) ܺ௧ − ܼ௧ ≤ ܻ

௧ 			,			݅, ݆ ∈ ܸ, ݐ ∈ ܶ   
(14) ܺ

௧ − ܼ
௧ ≥ − ܻ

௧ 		, ݅, ݆ ∈ ܸ, ݐ ∈ ܶ   

(15) ψ௧ =  ݍ
௧ 	

∈ᇲ
			 , ݐ ∈ ܶ	 

(16)  ܰ
௧

∈

= 1							, ݐ ∈ ܶ 

  
Variables: Description 

ܺ௧   = 
 

{ 1 if customer j immediately follows customer i on the route of the supplier’s vehicle in 
period t 

0   otherwise  

ܻ
௧ = 

{ 1 if customer j immediately follows customer i on the route of the supplier’s vehicle in 
period t while in MS, customer j immediately does not follow customer i in the same 
period 
0   otherwise 

ܰ
௧  { 

1   if the load of vehicle in period 	ݐ	 ∈ ܶ  is in step 	݇ ∈  ܭ

0   otherwise 
݅ ௧  inventory level at the vertexܫ	 ∈ ܸ at the end of period  ݐ ∈ ܶ 
ݍ	
௧   the quantity of products delivered from the vendor to customer i in time period t using 

his vehicle 
݃௧  continuous variables to enforce sub-tour elimination 
ψ௧  Total load carried by vehicle in period 	ݐ	 ∈ ܶ   
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(17) 
ܰ௧ߛ ≤

ψ௧ − π௧

π௧
									 , ݐ ∈ ܶ, ݇ ∈  ܭ

(18) ψ௧ − π௧

π௧
< ାଵߛ ܰ

௧ ଵ(1ܯ+ − ܰ௧)				, ݐ ∈ ܶ, ݇ ∈  ܭ

௧ݍ (19) 	 ∈ 	 ℤ∗, ݅ ∈ ܸᇱ, ݐ ∈ ܶ 
(20) ݃௧ 	≥ 0	, ݅ ∈ ܸᇱ, ݐ ∈ ܶ 
(21) ܺ	௧ ∈ {0,1}	,			݅, ݆ ∈ ܸ	, ݅ ≠ ݆	, ݐ ∈ ܶ 
(22) ܻ	

௧ ∈ {0,1}	, ݅ ∈ ܸ	, ݐ ∈ ܶ 
(23) ܰ

௧ ∈ {0,1}	, ݇ ∈ ,	ܭ ݐ ∈ ܶ 
 
 

 
Fig. 2. Cost rate vs. load variation breakpoints 

 
The objective function  0 comprises five parts: (i) 
inventory holding cost of supplier, (ii) inventory 
holding cost of customers (iii) routing cost of the 
supplier’s vehicle, (iv) route deviation cost, and 
(v) load deviation cost. Constraints  0- 0 are 
pertinent to inventory decisions. To be more 
specific, Constraints  0 calculate the inventory 
level for the vendor at the end of period	ݐ ∈ ܶ. 
Constraints  0 ensure no shortage of inventory for 
the vendor at the end of each period. 
Constraints  0 describe the inventory quantities for 
each customer at the end of period ݐ ∈ ܶ. 
Constraints  0 and  0 represent the capacity 
limitations of the customer warehouse, i.e., the 
first set of constraints is related to the minimum 
inventory level, and the second set of constraints 
is related to the maximum inventory level. 
Constraints  0 and (8) represent the quantity of 
vehicles delivered by the vendor’s based on the 
ML policy. Constraint  0 guarantees that the 
vehicle capacity is respected. Constraints  0 and  0 
correspond to the routing of the vendor’s 
vehicles. Constraints  0 and  0 correspond to sub-
tour elimination. Constraints  0 and  0 correspond 
to the rout deviation from MS. Constraints (16) 
to  0 indicate the load deviation from the MS. 
Constraints  0 to  0 ensure the integrality and non-

negativity of decision variables. In short,	ܼ∗ =
{0} ∪ ܼା. 
Assuming that cost of load variation is based on a 
step cost function, Fig. 2 shows a generic 
schematic of the rate of price breakpoints vs. load 
variation breakpoints. 

2.1. Decision support process 
 is a flowchart of the decision support process 
based on IRRP. At the first step, based on the 
static data extracted from the database and 
demand prediction, the mathematical 
programming model IRP is run to determine MS 
routings and loads. At this step, following the 
application of the routings and loads derived 
from the last step, the user begins to negotiate 
with the carrier contractor and makes a confirmed 
pre-plan prior to the appearance of the real 
demand data. After revealing the real demand 
data and based on the given MS data and results, 
the mathematical programming model 
corresponding to IRRP is run to determine the 
new routing and load amounts (rescheduled 
plan). At this step, DM checks to make sure 
whether or not the problem with real demand 
arises. If it does not match MS, then DM does a 
what-if analysis by running the mathematical 
programming at different levels of deviation 
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penalties in order to offer some acceptable 
solutions. Based on these solutions and 
comparison of the costs of applying each 
solution, DMs can decide on the amount of 

money that should be paid to match the 
rescheduling with MS. This can provide DM with 
enough information to negotiate with CC and 
execute the rescheduled problem. 

 

 
Fig. 3. The process of decision support system for cost change analysis rescheduling 

 
3. Numerical Experiments 

This section presents a number of experiments to 
evaluate the results of the proposed system and 
its application. The solution approach with 

GAMS-24.7.3 was implemented and run on a PC, 
Intel Core i3, CPU 3.70 GHz, Windows 10-64bit, 
and 8 GB RAM. 

 
 
 
 
 

stop 

Run the IRP mathematical programming model for 
IRP to determine the master schedule routing and 

load based on the predicted demand data  

Run the mathematical programming model to determine routing 
and load amount 

based on the revealed demand data (rescheduled plan) 

Negotiate the master schedule to carrier contractor and make a 
confirmed pre-plan  

Negotiate rerouting and new load with carrier contractor and 
make a confirmed plan  

Does real demand 
deviate from MS? 

 

Run IRRP mathematical programming model to provide 
acceptable solutions at different levels of deviation 

parameters 

Execute the plan 
 

start 

No 

Yes 
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Tab. 1. Presumed and actual demand for Scenario 1  

Customer # 
Presumed demand per 

period t Actual demand per period t 

t=1 t=2 t=3 t=1 t=2 t=3 
1 59 59 59 0 130 20 
2 35 35 35 35 70 35 
3 61 61 61 0 61 0 
4 26 26 26 26 26 26 
5 10 10 10 0 0 10 

 
Tab. 2. Parameters of sample numerical example 

Nodes 
Locations Maximum 

warehouse capacity 
Inventory 

holding cost 
  ℎܥ ݕ ݔ

depo 154 417 - 0.03 
1 172 334 195 0.02 
2 267 87 105 0.03 
3 148 433 116 0.03 
4 355 444 72 0.02 
5 38 152 22 0.02 

 
The example benchmark here is based on the 
following parameters: planning horizon p=3, the 
number of customers n=5, vehicle capacity of 
Q=289, the total number of load variation 
breakpoints k=7, load variation breakpoint 
[−100%;	−20%; 0; 	10%; 	25%; 	50%; 100%], 
the unit cost of traveling from the vertex ݅ to ݆ , 
ܾ = 1, Euclidean distance from the vertex ݅ to ݆, 

݁ = 	ට൫x୧ − x୨൯
ଶ
+ ൫y୧ − y୨൯

ଶ, in which sign 

⌊	⌋ means that the largest integer is lower than or 
equal to the value inside. The customer demands 
are presumed, as shown in Table 3 , with two 
columns. The first column is allocated to the 
predicted or presumed demand per period which 
is used for MS and actual demands per period t, 

applied to IRRP. As observed, while the 
presumed demand follows a steady trend and 
does not change during the planning horizon, the 
actual demand follows different trends. Tab. 2 
presents other parameters of the sample 
numerical example. 
While running the IRP optimization model, the 
master schedule routing cost, inventory cost, and 
objective function (total cost), i.e., the summation 
of the routing cost and inventory cost, are 2125.0, 
5.05, and 2130.05, respectively. Of note, if the 
deviation parameters including ݂

௧,	݉  are 
considered zero, the IRRP optimization model 
will be transferred into the IRP. In addition, the 
application of this model leads to MS. 

 
Tab. 3. Costs and rescheduled edges vs. different levels of deviation coefficient 

Deviation 
coefficient 
(݂) 

Total cost Routing cost Inventory cost 
Deviation 
cost 

Number of 
rescheduled 
edges 

Rescheduled 
Deviation 
from MS 
(%) 

Rescheduled 
Deviation 
from MS 
(%) 

Rescheduled 
Deviation 
from MS 
(%) 

0 2282.1 7.14 2278 7.20 4.09 -19.01 0 7 
20 2456.1 15.31 2312 8.80 4.09 -19.01 140 7 
50 2555.1 19.95 2401 12.99 4.09 -19.01 150 3 

75 2630.1 23.48 2401 12.99 4.09 -19.01 225 3 

100 2705.1 27.00 2401 12.99 4.09 -19.01 300 3 
150 2855.1 34.04 2401 12.99 4.09 -19.01 450 3 

300 3305.1 55.17 2401 12.99 4.09 -19.01 900 3 
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3.1. Sensitivity analysis 
The proposed system assists DM with 
rescheduling negotiations based on acceptable 
solutions made available through mathematical 
programming at different levels of deviation 
parameters. This is called sensitivity analysis in 

literature. To this end, in order to decide on the 
validity of the model, a number of experiments 
have been proposed to apply a different feasible 
solution to the rescheduling problem. Then, the 
IRRP model runs the following objective 
function  0, which entails the substitution of  0. 

 

(24) 
Min IRP-R = 
	ℎ
௧∈ఁ

௧ܫ +ℎ
௧∈ఁ

௧ܫ

∈ᇲ
+ܾ ݁

௧∈ఁ

ܺ௧
∈∈

+ ݂
௧
ܻ
௧

௧∈ఁ∈

+ଵ݉ܰ௧
∈௧∈ఁ

 

 
To ensure the simplicity of studying the deviation 
parameters, Deviation Coefficient (DC) values of 
routing deviation and load deviation were 
analyzed first. This would be beneficial, 
especially when the DM prefers to adjust any 
deviation parameter at any moment during the 
process of decision-making. Finally, these 
parameters are carefully investigated.  
 
3.1.1. Analysis of routing deviation 
(rescheduled edges) 
By setting the ݉ = 0	∀	݇ ∈  analyzing the ,ܭ
effects of different levels of routing deviation 
cost ∑ ∑ ݂

௧
ܻ
௧

௧∈ఁ∈  on IRRP is made possible. 
To ensure the simplicity of analysis, it is assumed 
that ݂

௧ = ݂ is fixed in each period ݐ ∈ ܶ and for 
every customer ݅ ∈ ܸᇱ. In Table 3, different 
values of ݂ inputted by the user can be observed 
in the first column of the rows. For each value, 
the IRRP optimization console is run, and the 
results including the total cost, routing cost, 
inventory cost, deviation cost, and number of 
rescheduled edges are reported. In cost-related 
columns, the deviation values of MS are given in 
percentage. Of note, the higher level of deviation 

coefficient implies the user’s increasing tendency 
to remain in sync with MS, which is done so 
using a mathematical model that penalizes the 
objective function with a higher level of 
coefficient related to the re-scheduled edges. 
Coefficient at zero implies that there is no 
restriction on user to follow MS and that the 
solution of IRRP model is free from any 
constraint that enforces compliance with MS. It 
can be seen that as deviation coefficient rises, the 
routing deviation from the number of rescheduled 
edges decreases.  
Fig. 4 indicates the depicted data. The routing 
and deviation costs are shown on the left vertical 
axis (1st axis), and the inventory cost and the 
number of re-scheduled edges are shown on the 
right vertical axis (2nd axis). Increasing the 
deviation coefficient makes the model offer a 
schedule that bears a close resemblance to MS. In 
this respect, although the routing cost and 
deviation cost rise, the number of re-scheduled 
edges and inventory cost decline. Considering the 
value of 50 for ݂ makes the number of 
rescheduled edges decline from 7 to 3. Further 
growth of ݂ would no longer be effective in 
reducing the number of rescheduled edges. 

 

Fig. 4. graphical view of the data in Table 3 
 
The graphical view of the effects of the different 
݂ levels on routing, inventory, and deviation 
costs  as well as the summation of all figures 
representing the total cost is given in Fig. 5. The 
vertical and horizontal axes show the locations of 

each customer i numbered from 1 to 5 and those 
of depo, i.e., the source of distribution of goods, 
respectively. To precisely analyze this effect on 
the routing schedule, the routing is depicted in all 
periods of horizontal planning. In part (a), the 
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routing schedule for Ms and, in parts (b) and (c), 
routing schedule for some level of ݂ are 
presented. A comparison between the graphical 
view of routing schedule in parts (b) and (c) and 

that of part (a) shows that as ݂ increases, routing 
will remain more sync with the MS; in part (c), 
any increase in ݂ does not make the reschedule 
match MS routing. 

 
(a) MS 

 
(b) ݂ = 0, 20 

 
(c) ݂ = 50, 75, 100, 150, 300 

Fig. 5. Routing schedule for MS and different levels of PC 
 

3.1.1. Analysis of deviation in load values  
Having set the ݂

௧ = 0	∀			݅ ∈ ܸᇱ, ݐ ∈ ܶ, one can 
easily analyze the effects of different levels of 
load deviation cost ∑ ∑ ݉ ܰ

௧
∈௧∈ఁ . It is 

assumed that the cost of deviation for load is 
based on the step cost function. However, this 
assumption in the real world is more practical 
because considering a linear cost function for 
deviation in the presence of MS seems unrealistic 
on two sides of one pre-agreement. Therefore, the 
data of load variation breakpoints (ߛ) are given 

by the user, with the technical issues of 
transportation and CC taken into consideration. 
To examine the effects of the cost of each 
breakpoint, the user can add the related data to 
the model and carry out what-if analysis. Tab. 4 
shows the load variation breakpoints at different 
levels of deviation coefficient Of note, ݉, which 
corresponds to each load variation breakpoints, is 
calculated by multiplying the basic cost values by 
coefficients. 

 
Tab. 4. load variation breakpoints and related deviation coefficients () 

Load variation 
breakpoints 
 (ߛ)

-
100% 

-
20% 0 10% 25% 50% 100% 

Basic cost 
values 0.5 0.8 0 0.1 0.12 0.3 0.43 

co
ef

fic
ie

nt
s 

0 0 0 0 0 0 0 0 
10 5 8 0 1 1.2 3 4.3 
20 10 16 0 2 2.4 6 8.6 
50 25 40 0 5 6 15 21.5 
70 35 56 0 7 8.4 21 30.1 

100 50 80 0 10 12 30 43 
200 100 160 0 20 24 60 86 
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Tab. 5. Costs including deviation cost vs. different level of deviation coefficient 

coefficients 

Total cost Routing cost Inventory cost Load 
deviation 
cost 

re-
scheduled 

Deviation 
from MS 

(%) 

re-
scheduled 

Deviation 
from MS 

(%) 

re-
scheduled 

Deviation 
from MS 

(%) 
0 2282.09 7.14 2278 7.20 4.09 -19.01 0 

10 2287.31 7.38 2278 7.20 4.31 -14.65 5 
20 2292.31 7.62 2278 7.20 4.31 -14.65 10 
50 2307.31 8.32 2278 7.20 4.31 -14.65 25 
70 2317.31 8.79 2278 7.20 4.31 -14.65 35 
100 2318.14 8.83 2312 8.80 6.14 21.58 0 
200 2318.14 8.83 2312 8.80 6.14 21.58 0 

 
In the first row of Tab. 4, load variation 
breakpoints (ߛ) are presented in percentage, as 
determined by the user. For each breakpoint (ߛ), 
basic cost values are given by the user, too.  For 
ease of inputting the data, the user is only 
requested to add a value, which is selected 
uniformly from [0.00-1.00] cost values at each 
step. Then, the coefficient is to be placed in the 
first column by the user and multiplied by the 

basic cost values, thus achieving ݉  values at 
each step. The IRRP optimization model is run 
for each ݉ .  
Tab. 5 shows the effects of the different levels of 
݉  on routing, inventory, and penalty cost and 
total cost. 
The graphical view of the effects of the different 
level of DC on routing, inventory, and penalty 
costs and the total cost is presented in Fig. 6.

 

The costs of routing and total costs are given on 
the left vertical axis (1st axis), while the costs of 
the deviation and inventory are given on the right 
vertical axis (2nd axis). It is shown that when DC 
increases from 0 to 70, no change in routing and 
inventory costs occurs, whereas this increase can 
make the load deviation cost rise. In other words, 
this increase is not enough for the new load plan 
to match the load offered by MS. When DC 
surges to almost 100, the routing and inventory 
costs go up, while the load deviation cost starts to 
plummet sharply. When the coefficient reaches 
100 and more, the the load deviation cost drops to 
zero, meaning that the master schedule and the 
rescheduled problem load plan are completely 

consistent per period and that the increase of 
coefficient does not affect the problem anymore.   
Fig. 7 shows the Fig. 7summation of load in 
different periods (t=1,2,3) that should be carried 
based on the reschedule program at different load 
deviation costs. The axis of Periods 2 and 3 is the 
first axis on the left and Period 3 is the second 
axis on the right. The solid line is the load that 
should be carried in different periods (t=1,2,3) 
based on the master schedule. In Period 1, when 
the load deviation coefficient is 10, the load 
amount matches the load amount offered by 
master schedule. In Periods 2 and 3, the values of 
the load deviation coefficient would be 20 and 
70, respectively. 

 

Fig. 6. Trends of costs vs. penalty coeffecient for load change in Case 1 
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Fig. 7. Summation of loads in different periods 

3.1.2. Analysis of combinatorial deviation 
In the previous sections, the effects of different 
levels of deviation coefficients on the load and 
routing variations were separately analyzed. In 
real cases, these effects are simultaneously 
produced; therefore, the effects of different 
combinatorial levels of deviation coefficient are 

taken into consideration in this research. In this 
respect, the user attempts to extract the maximum 
and minimum values of deviation coefficients, 
which would make the new planning match MS. 
To this end, a new measure for total deviation, 
i.e., the summation of both rout and load 
deviations, is introduced. 

  
                                                                                    (25) Total deviation = rout deviation + load deviation 

 
3.1.3. Tagouchi method for analysis of 
combinatorial deviation 
Since the user is willing to know how the 
simultaneous changes in deviation affect the total 
cost and total deviation of rescheduling and, also, 
to tune the best combination of them, the 
combinatorial deviation is studied using 
Tagouchi method. According to Tab. 6, the 
possible ranges of parameters for routing 

deviation coefficient (routing D.C.) and  load 
deviation coefficient (load D.C.) are observed. 
Using MINITAB17 and adding a range of 
parameters from the table to the Tagouchi design 
of experiments, one can select the plan L9, where 
the signal-to-noise ratio is selected to be small. 
The results of applying the method are shown in 
Fig. 8. 

  
Tab. 6. Factors, Parameter range, and levels 

Factor  
(deviation 

coefficient ) 

Parameter 
range 

Level (value) 

1(low) 2(middle) 3(high) 

routing D.C. 0-150 0 50 150 
load D.C. 10-200 10 50 100 
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(a) 

(b) 
Fig. 8. Main effects plot at SN ratios. (a) response is total cost; (b) response is 

total deviation 
 

 

(a) 

 

(b) 

Fig. 9. Contour Plots, (a) Total deviation vs Routing P.C. and Load P.C. (b) Total deviation vs 
Routing P.C. and Load P.C. 

 
 

Here, in one experiment, the response is selected 
as “Total deviation” and another time as “Total 
cost” (Fig. 8).  For part (a), the response is 

chosen to be the “Total cost” and for part (b) the 
response is chosen to be the “Total deviation”. 
These plots show that lower values of deviation 
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coefficient result in the lower total cost and 
higher total deviation level, and vice versa.  Load 
D.C. in comparison to Routing D.C. has lower 
effects on both Total cost and Total deviation. To 
be specific, when the total deviation exceeds the 
value of 50 for both Load PC and Routing PC, it 
will reach its lowest point. To ensure a better 
understanding of these effects, the contour plot in 
Fig. 9 depicts Total cost vs Load D.C. and 
Routing D.C. in part (a) and Total deviation vs 
Load D.C. and Routing D.C. in part (b). 

 
4. Conclusion and Future Studies 

The present research investigated the Inventory-
Routing Rescheduling Problem (IRRP) as a 
variant of the well-known Inventory-Routing 
Problem. The aforementioned problem will be 
solved with the least deviation from the pre-
planned scheduling. Based on the available data 
on customer predicted demand, the decision-
maker decides to have pre-planned scheduling for 
IRP and, then, the real demand appears. Next, 
rescheduling of IRP is required. As a solution 
approach, a decision-support tool was devised to 
help the decision-maker adjust the related 
deviation parameters. The proposed approach 
proposed a mathematical modeling to optimize 
the rescheduled problem and conducted 
sensitivity analysis in order to study the effects of 
adjusting different variables (load carrying, 
distance, etc.). The numerical experiments 
showed that the sensitivity analysis can assist 
DM in cost negotiation and determining the cost 
of a new plan when setting a contract based on 
the pre-planning. For further study, it is 
recommended that the future research include 
heuristic and metaheuristic approaches to provide 
an optimal or near-optimal solution to large 
instances. 
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