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Abstract

Profile monitoring in statistical quality control has attracted attention of many researchers recently. A profile is a function between response variables and one or more independent variables. There have been only a limited number of researches on monitoring multivariate profiles. Indeed, monitoring correlated multivariate profiles is a new subject in the fileld of statistical process control. In this paper, we investigate the effect of autocorrlation in monitoring multivariate linear profiles in phase II. The effect of three main models namely AR(1), MA(1), and ARMA(1,1) on the  methods of multivariate linear profile monitoring is evaluated and compared by using simulation study and average run length criteria. Results indicate that autocorrelation affects performance of the existing methods significantly. 

Keywords; Multivariate linear profiles, Autocorrelation, Time series modeling, Average Run Length 

1. Introduction

In recent years, a lot of researches have investigated different issues in the area of profile monitoring. Kang and Albin [8] and Kim et al. [11] introduced methods to monitor simple linear profiles. Zou et al. [30] and Mahmoud et al. [13] considered change point methods in profile monitoring. Zou et al. [32] and Kazemzade et al. [9] studied nonparametric approaches and polynomial profiles, respectively. Nonlinear profiles monitoring was discussed by researchers including Ding et al. [4], Moguerza et al. [14], Williams et al. [29], and Vaghefi et al. [28]. Noorossana et al. [16, 17], Zou et al. [31], and Eyvazian et al. [5] proposed methods to monitor multivariate linear profiles. Noorossana et al. [20] showed the effect of non–normality on the monitoring of simple linear profiles. Several authors including Jensen et al. [6], Noorossana et al. [15, 18, and 19], Jensen and Birch [7], Soleimani et al. [22, 23, 24, and 25], Kazemzadeh et al. [10] addressed issues related to autocorrelation in linear, non-linear, and polynomial profiles. Soleimani and Noorossana [26, 27] proposed methods to consider within and between profile autocorrelation in multivariate linear profiles in phase II. 
Recently, new topics such as wavelet filtering, high dimensional control chart, and roundness profile were studied by Chang et al. [1], Chen et al. [2], and Pacella et al. [21], respectively.

Independence of within or between error terms is one of the basic assumptions in most of the profile monitoring methods. However, in certain situation this assumption can be violated easily. 
In this paper, we investigate the effect of autocorrelation within multivariate simple linear profiles in phase II. We consider the multivariate simple linear profile model presented by Noorossana et al. [17] or
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 is a n×l matrix of response variables for the kth sample, X is a n×2 matrix of independent variable, β is a 2×l matrix of known regression parameters, and
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is a n×l matrix of error terms which follows a multivariate normal distribution with mean vector zero and known covariance matrix
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This paper is arranged as follows. In Section 2, we review the multivariate simple linear profile monitoring methods in phase II. The autocorrelated models are presented in Section 3. In Section 4, the effects of autocorrelation on the average run length performance of the considered models are investigated. Section 5 summarizes our concluding remarks. 

2. The multivariate simple linear profile monitoring methods

The three methods proposed by Noorossana et al. [17] for monitoring multivariate simple linear profiles in phase II are as follows.
The first method is based on MEWMA control chart. The coefficient vector for 
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 and a 2l×2l covariance matrix Σβ with the following correlation structure between its elements                  
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where 
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The multivariate exponentially weighted moving average (MEWMA) vector is defined as
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where 
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 is a multivariate normal random vector with zero mean vector and known covariance matrix 
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. For monitoring the coefficients vector, the chart statistic is defined as (Lowry et al. [12])
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when 
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The second method referred to as
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 is a multivariate normal random vector with zero mean vector and known covariance matrix
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In the third method, in order to make intercepts vector independent of the slopes vector, they coded the x values. Hence, in Eq.(1) the ith observation in the kth sample can be rewritten as
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The MEWMA-3 control chart gives an out of control signal when 
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3. Autocorrelated multivariate simple linear profile models

In order to show the effect of autocorrelation on the performance of multivariate profile monitoring, we consider three well known time series models, namely first order autoregressive model or AR(1), first order moving average model or MA(1), and first order autoregressive-first order moving average, ARMA(1,1). 
We consider a multivariate simple linear profile when an AR(1) autocorrelation structure exists in the error terms. Hence, for the kth sample we have 
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In addition, a multivariate simple linear profile model when the error terms have a MA(1) autocorrelation structure is
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Also, we investigate a multivariate simple linear profile model with ARMA(1,1) structure as follows
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In the above equation, 
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 define the coefficient matrices. For the sake of simplicity, we consider them as diagonal matrices (l×l) and diagonal elements 
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4. The effect of autocorrelation on ARL performance
In this part, we investigate the effect of autocorrelation on the ARL performance in the three methods proposed by Noorossana et al. [17] and for three models of correlation discussed in part 3. We consider the profiles used by Noorossana et al. [17] defined as 
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, the autocorrelation structure leads to the independent situation. The results are based on 5,000 simulation runs. We used the original limits for the three methods leading to an overall in-control ARL of 200.  

We evaluate the different shifts in intercept, slope and standard deviation of the profile (Eq.15) for MEWMA method. Table 1 shows the ARL performance when 
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Table1: The average run length results for MEWMA method when 
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Table2: The average run length results for MEWMA method when 
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Table3: The average run length results for MEWMA method when 
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Similar results are achieved for MEWMA-3 and MEWMA/χ2 methods that are not reported hear. Figure 1 shows the results in Table1 graphically. The results for the three methods are presented in Table 4.
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Fig.1: ARL performance for shifts in the intercept.
Table 4: Comparison of the three correlation models for shifts in the intercept, slope, and standard deviation. 
	Standard deviation
	Slope
	Intercept
	Correlation
	Method
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ARMA(1,1)
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The following results could be concluded from Table 4:

1. In general, positive autocorrelation reduces the in-control ARL or equivalently increases the false alarm rate. 
2. According to the simulation results, among the considered correlation structures, AR(1) and ARMA(1,1) have more considerable effects on the performance of monitoring methods.
3. In general, by increasing the value of shift size, performance of the three correlation models become similar and correlation effects turn to be negligible.
4. In all the three monitoring methods, for the case of MA(1) model with weak correlation and small shifts, we can see an increase in ARL.

5. Conclusion

In this paper, the effect of three well known time series models namely AR(1), MA(1), and ARMA(1,1) were investigated on the performance of three multivariate linear profile monitoring methods. We considered three common methods referred to as MEWMA, MEWMA-3, and
[image: image150.wmf]2
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 for monitoring multivariate linear profiles in phase II. Simulation results show significant effect of autocorrelation on the ARL performance of the three monitoring methods. The effect impact is different for different shift sizes and correlation coefficient values. The results of this research can be used as a guide for the users of multivariate profile monitoring methods.
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