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	Abstract

In this paper, we consider scheduling of project networks under minimization of total weighted resource tardiness penalty costs. In this problem, we assume constrained resources are renewable and limited to very costly machines and tools which are also used in other projects and are not accessible in all periods of time of a project. In other words, there is a dictated ready date as well as a due date for each resource such that no resource can be available before its ready date but the resources are allowed to be used after their due dates by paying penalty cost depending on the resource type. We also assume, there is only one unit of each resource type available and no activity needs more than it for execution. The goal is to find a schedule with minimal total weighted resource tardiness penalty costs. For this purpose, we present a hybrid metaheuristic procedure based on the greedy randomized adaptive search algorithm and path-relinking algorithm. We develop reactive and non-reactive versions of the algorithm. Also, we use different bias probability functions to make our solution procedure more efficient. The computational experiments show the reactive version of the algorithm outperforms the non-reactive version. Moreover, the bias probability functions defined based on the duration and precedence relation characteristics give better results than other bias probability functions. 
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1. Introduction

The goal of the resource-constrained project scheduling problem (RCPSP) is to minimize the duration of a project subject to finish-start precedence constraints and renewable resource constraints. It is shown in Blazewicz et al. [1] that the RCPSP, as a job-shop generalization, is NP-hard in the strong sense. A large number of exact and heuristic procedures have been proposed to construct workable baseline schedules for this problem; see Demeulemeester and Herroelen [2], Neumann et al. [3] for recent overviews and Herroelen [4] for a discussion on the link between theory and practice.

In some projects, some expensive resources like especial types of crane, tunnel boring machines, very expert humans and etc. are often hired out of the project. Companies that lease these costly resources have a plan for leasing them. This schedule dictates ready dates and due dates for customers, i.e. the companies needing them. We assume these types of resources are constrained renewable and are not available in all periods of time of a project horizon. We also assume only these resources are constrained while other resources are unlimited. In most of the projects, usually one unit of each expensive resource type is hired and no activity needs more than it for execution. For each resource type, we consider a ready date, a due date and a penalty cost. No resource can be accessible before its ready date but these resources are permitted to be released after their due dates by paying penalty costs. The goal is to find a schedule with minimal total weighted resource tardiness penalty costs. Thus, we face a RCPSP under minimization of total weighted resource tardiness penalty cost, shown by RCPSP-TWRTPC. 
The RCPSP-TWRTPC was introduced by Ranjbar et al. [5] and they presented a branch-and-bound algorithm for it. Other related problems proposed in the literature are scheduling problems in fields of project scheduling and machine scheduling with objective functions linked to the tardiness. In all of these problems, the issue of tardiness is proposed for activities or jobs and not for resources or machines. Vanhoucke et al. [6] have developed a branch-and-bound (B&B) algorithm accompanied with an exact recursive search procedure for the RCPSP under earliness/tardiness objective. Also, Nadjafi and Shadrokh [7] developed a B&B algorithm for the weighted earliness-tardiness project scheduling problem with generalized precedence relations. We mention that we are also working on a B&B algorithm for the RCPSP-TWRTPC at the present time.
The contributions of this article are threefold: (1) we introduce and formulate the RCPSP-TWRTPC; (2) we develop reactive and nonreactive versions of a hybrid metaheuristic for the proposed problem; (3) we develop seven biased probability functions to make algorithm more efficient and show, using computational results, that biased probability functions defined on the basis of duration and precedence relation characteristics outperforms others. 
The remainder of this article is organized as follows. Problem modeling and formulation are provided in Section 2. Section 3 presents our solution representation while section 4 is devoted to our metaheuristic algorithm. The computational experiments are presented in section 5. Finally, summary and conclusions are given in Section 6. 

2. Problem modeling and formulation

The RCPSP-TWRTPC can be represented by a disjunctive graph 
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. Graph G has an activity-on-node (AON) representation in which  
indicates the set of activities (nodes) where dummy activities 0 and n+1 represent start and end of the project. The set of conjunctive arcs 
 consists of arcs representing technical finish-to-start precedence constraints among activities where 
 implies activity j can be started after finishing of activity i. Let 
[image: image9.wmf]{

}

m

R

,...,

2

,

1

=


 be the set of constrained renewable resources and  the set of activities which need one unit of resource 
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. There is a disjunctive arc 
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 between nodes i and j (If there is a conjunctive arc (or path) between nodes i and j which require a common resource, the disjunctive arc 
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 is not needed). Thus we present the set of disjunctive arcs as 
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since availability of each resource is at most one unit in each period of time and two activities i and j where  
can not be processed in parallel. For each activity i, the parameter  indicates its duration where 
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. In addition, for each resource r, 
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 and  show the ready date, due date and weight of this resource, respectively. In order to embed the resource ready dates in the graph representation, we add one node corresponding to each resource to the project network. For the resource r, this node displays an activity with duration 

 which is direct successor of the start dummy activity and direct predecessor of every activity 
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Table 1 shows the resource information of a RCPSP-TWRTPC instance with n=6 real activities, m=2 resources and the corresponding graph is depicted in figure 1. In this figure, the number shown above each node indicates activity duration and the number(s) below indicate the resources required for activity execution. The nodes labeled ( and  ( correspond to ready times of resources 1 and 2, respectively. Precedence relations of each of these nodes with dummy node 0 and its successors (the nodes which require these nodes) are depicted with bold arcs. Also, the disjunctive arcs are depicted with dashed lines while conjunctive arcs are shown as regular arcs. 
	Insert table 1 about here

	Insert figure 1 about here


Any solution of a RCPSP-TWRTPC instance is a vector 
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where  is  integer and shows the start time of activity i.  Given a policy for scheduling, such as earliest time schedule, this solution S is equivalent to a selection 
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 is not cyclic. Conversely, any selection  satisfying the above properties corresponds to a feasible schedule. Let 
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 denote the length of the critical path (longest path) from node i to node j in graph
  (if there is no path between i and j, then 
is not defined). The (earliest) finish time 
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of activity i is equal to 
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 and can be 
computed using the algorithm of Bellman [8] with complexity.The release time of resource r shown by 
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and the tardiness of this resource is 
. The total weighted resource tardiness penalty cost is .
The RCPSP-TWRTPC described above can be formulated as the following integer programming using variables 
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The objective function (1) represents the minimization of the total weighted resource tardiness penalty costs. Constraint (2) shows that the release time of each resource is not less than the finish time of each activity which requires that resource. Constraints (3) and (4) ensure that 
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. Constraint (5) makes the starting times of all activities greater than or equal to the ready dates of their corresponding resources. Constraint (6) represents the technical precedence relations or conjunctive constraints while constraints (7) and (8) relate to the resource or disjunctive constraints. Finally, constraint (9) ensure that variables 
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3. Solution representation

Our constructive heuristic algorithm uses a schedule representation to encode a project schedule and a schedule generation scheme to translate the schedule representation to a schedule S. In our problem, the schedule generation scheme determines how a feasible schedule is constructed by assigning starting times to the activities, whereby disjunctive arcs are converted to conjunctive arcs by schedule representation. 
We represent each solution of a RCPSP-TWRTPC using a binary list called direction list (DL) and shown by 
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 and the optimal solution, found by enumeration, of this project is obtained with 
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 corresponding to the following arcs: (1,2), (1,4), (2,5), (4,3), (5,3), (4,5) and (5,6). 
Each solution of the RCPSP-TWRTPC can be easily translated to a schedule S using the critical path method (CPM), shown by S=CPM(DL). The optimal solution corresponding to the above mentioned DL is S=(1,4,17,6,12,21) with 8 units of tardiness penalty cost.
4. GRASP and path-relinking
Below, we discuss GRASP and path-relinking as a general heuristic procedure (Section 4.1) and describe the overall structure of our search procedure for RCPSP-TWRTPC-solutions (Section 4.2). 
4.1. General overview
In the following we briefly describe general GRASP and path-relinking procedures. 

4.1.1. GRASP

A greedy randomized adaptive search procedure (GRASP) is a multi-start and iterative process (Aiex et al. [9]; Feo and Resende [10]; Feo et al. [11]). Each GRASP-iteration consists of two phases: in a construction phase, a feasible solution is produced and, in a local-search phase, a local optimum in the neighborhood of the constructed solution is sought. The best overall solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one element at a time. The basic construction phase in GRASP is similar to the semi-greedy heuristic proposed independently by Hart and Shogan [12]. At each construction iteration, the choice of the next element to be added is determined by ordering all candidate elements (i.e. those that can be added to the solution) in a candidate list with respect to a greedy function. This function measures the benefit of selecting each element. The heuristic is adaptive because the benefits associated with every element are updated at each iteration of the construction phase to reflect the changes brought on by the selection of the previous element. The probabilistic component of a GRASP resides in the fact that we choose one of the best candidates in the list but not necessarily the top candidate; the list of best candidates is called the restricted candidate list. It is almost always beneficial to apply a local-search procedure to attempt to improve each constructed solution.
4.1.2. Path-relinking 

Path-relinking is an enhancement to the basic GRASP procedure, leading to significant improvements in solution quality. Path-relinking was originally proposed by Glover [13] as an intensification strategy exploring trajectories connecting elite solutions obtained by tabu search or scatter search (see Glover and Laguna [14] and Glover et al. [15]). Starting from one or more elite solutions, paths in the solution space leading towards other elite solutions are generated and explored in the search for better solutions. This is accomplished by selecting moves that introduce attributes contained in the guiding solutions. Path-relinking may be viewed as a strategy that seeks to incorporate attributes of high quality solutions, by favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strategy applied to each locally optimal solution, was first proposed by Laguna and Marti [16]. It was followed by several extensions, improvements, and successful applications (see Ribeiro et al. [17], Resennde et al. [18] and Alvarez et al. [19]).
4.2. Adapting GRASP and path-relinking to our setting

4.2.1. Global structure of the algorithm

The pseudo-code of global structure of our GRASP and path-relinking implementation is illustrated in algorithm 1. Our basic algorithm maintains a set of elite solutions (ES) to combine them in step 9 using path-relinking algorithm. This set is let an empty set in the first step. A while-loop is repeated until termination criterion (TC), a specified number of iterations, is met. At the beginning of this loop, a DL is built using building direction list (BDL) procedure (section 4.2.2). Next, generated DL is evaluated using CPM and is improved using local search (LS) procedure (section 4.2.3). In steps 6 to 11, we decide to add DL to the ES or not. For this purpose, we define Max_Elite as the maximum size of ES (size of ES is shown by |ES|) and 
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4.2.2. Building direction list procedure
This is an iterative algorithm and in each iteration at least one of the elements of 
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In each iteration of BDL, one element is selected from a restricted candidate list (RCL) to be set in DL. This element is selected by a biased random procedure. In order to make bias random selection of elements, we define seven rules and name each of them a priority rule (pr). Priority list (PL), built in step 2, is a sorting of disjunctive arcs based on priority rule pr, see section 4.3. In step 3, we determine the algorithm to be reactive or nonreactive by selecting value(s) for (. If ( is fixed, we have nonreactive version of the algorithm but if at each iteration, ( is selected from a discrete set of possible values, the reactive version of the algorithm is chosen. In the reactive version, the selection of ( is guided by the solution values found in the previous iterations. One way to accomplish this is to use the rule proposed by Prais and Ribeiro [21]. Let 
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 for i=1,…,k. In step 4, we initialize DL as an empty set. In the next step, we calculate the incremental tardiness penalty cost corresponding to all 
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In the next step, selected member element 
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 is inserted in corresponding element of  DL. 
In step 11, the CL and PM are updated as follows. First, we remove from CL the element which contains e and also the element indicating opposite direction for the disjunctive arc associated to the selected element e. Second, if selected element e corresponds to arc 
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  d) . In these four rules, pred(i) and suc(j) indicate all (direct and indirect) predecessors and successors of activity i respectively, initialized based on set C and is updated whenever a new conjunctive arc is added. Rule (a) shows that arc 
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 builds a path between node i and every node of suc(j) while rule (c) shows that this new added arc creates a path between every node of pred(i) and node j. Finally, the last rule demonstrates that arc [image: image146.wmf]j
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 creates a path between nodes i and j. Also, rule (b) indicates that arc  that 
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 to DL. In step 13, the incremental tardiness penalty costs are recalculated and final DL is returned in step 16.
4.2.3. Local search procedure
The local search procedure is illustrated by pseudo-code in algorithm 3. Let 
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This procedure is repeated for all elements of 
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4.2.4. Path-relinking procedure
The idea of our path-relinking procedure, illustrated in algorithm 5, is taken from Ranjbar et al.2009 [20]. In the first step, we get two direction lists 
[image: image184.wmf]DL

 and 
[image: image185.wmf]L

D

¢

as inputs. In the second step, we assign 
[image: image186.wmf]DL

 to initial direction list (
[image: image187.wmf]in

DL

) and 
[image: image188.wmf]L

D

¢

 to guiding direction list (
[image: image189.wmf]gu

DL

). This assignment is exchanged in step14 and procedure is repeated again. Also, we define child set CS as the selected children using PR procedure and let it as an empty set in step 2. Next, we let graph set GS, a set of generated graphs, as an empty set. In continue, we construct graphs 
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. In step 10, repaired graph is added to GS. At the beginning of step 13, one path of path-relinking has been made. In step 15, one solution is selected from this path and is added to CS. The selected solution that is a graph should have direction list different from all members of ES. Steps 3 to 13 are repeated by exchanging role of initial and guiding direction lists. After step 14, CS has two members and we select the better one using CPM in step 15. Selected member is returned as the output of PR procedure in step 16.
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4.3. Priority rules
In this section, we develop seven priority rules to establish the priorities of disjunctive arcs in PL where priority values are determined by 
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Table 2 shows the formula of each priority rule and the contributing characteristics. In the priority rule 1, only precedence relations of activities are contributing. In this rule,
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Equation (11) requires initialization which is given by 
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Two characteristics, precedence relations and resource requirements are contributing in rule 5 in which 
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 where k is representative of all activities belonging to at least one of the pred(i), pred(j), suc(i) or suc(j) and requiring at least one common resource with activity i and j.  Rule 6 is based on the combination of two characteristics, durations and resource requirements, while in the last priority rule all three characteristics are contributed. 
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Table 3 illustrates the result of application of each priority rule on the example project. In this table, set ( and its corresponding priorities list (PL) of the disjunctive arcs are shown for each rule. 
	Insert table 3 abut here


5. Computational experiments

5.1. Benchmark problem sets
We have coded the procedure in Visual C++6 and performed all computational experiments on a PC Pentium IV 3GHz processor with 1024 MB of internal memory. In order to evaluate the performance of our algorithm, we generated test problems using the random network generator RanGen (Demeulemeester et al. [24]). The test problems are generated for full factorial of three parameters, i.e. the number of activities (n), the network shape parameter, order strength
 (OS), and the resource factor
 (RF). We consider five values 20, 22, 24, 26 and 28 for n, three values 0.2, 0.35 and 0.5 for OS and three values 0.1, 0.2 and 0.3 for RF. For each combination of n, OS and RF, we generate three test instances giving rise to 135 test instances. We also set the number of resource to m=3.
 Also, for each resource r, we select , 
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 and 
respectively. 
We run our algorithm for three values of TC as TC=100, 1000 and 10000.
5.2. Parameter setting

One of the benefits of GRASP is that it has smaller number of parameters than other metaheuristics. Since we have used reactive version of GRASP, the parameter ( is set automatically. For this purpose, we consider set ( as ( ={0, 0.05, 0.1, …, 1} in which parameter ( is changed in a range between zero and one with step size 0.05. The case (=0 corresponds to a pure greedy algorithm, while (=1 is equivalent to a random construction. Figure 2 shows the frequency of different values of ( used in TC iterations when priority rule 4 (the best priority rule) is used. All three curves have a bell-shape in which maximum frequency for TC=100 occurs for (=0.35 while for TC=1000 and 100000 occur for (=0.4.
	Insert figure 2 about here


5.3. Comparative Computational results

In this section, we first compare the results of the algorithm obtained based on different priority rules. Next, a comparison between reactive and nonreactive versions of the algorithm is done. In continue, we investigate the impact of local search and path-relinking procedures. Comparison criterion is average percent deviation (APD) from optimal solutions, obtained by a very long run of an enumerative scheme in which two opposite directions for each disjunctive arc is considered. 

5.3.1. Impact of priority rules

Table 4 shows the APD for solutions using different priority rules and three termination criteria. The results show a consistent ranking of priority rules for different values of TC. This rank is 4, 2, 1, 5, 7, 6 and 3. Priority rule 4 that can be considered as a combination of priority rules 1 and 2 has the smallest APD. After that, priority rules 2 and 1 have the second and third smallest APD, respectively. Priority rule 3, based on resource requirements, has largest APD. It can be concluded that priority rules in which durations and precedence relations of activities are contributing have better results than priority rules in which resource requirements of activities are contributing. The average CPU run time for TC=100, 1000 and 10000 are 0.05, 0.63 and 6.84 seconds.
	Insert table 4 about here


5.3.2. Comparison of reactive and nonreactive versions of the algorithm
In this section, we compare two versions of our algorithm, reactive and nonreactive. For this comparison, we consider only priority rule 4, the best priority rule, and set parameter ( for different values of TC based on fine tuning. For nonreactive version, we set ( to 0.35 when TC=100 and set it to 0.4 when TC=1000 and 10000. The results of nonreactive version of the algorithm in which ( has a fixed value are shown in table 5. Also, we have shown in this table the results of the cases (=0 and 1. 
	Insert table 5 about here


The results show reactive version outperforms nonreactive version of the algorithm. When we consider TC=100 iterations, APD in nonreactive version is 78.9 while this value in reactive version is 61.7, shown in table 4. Also, when we set TC to 1000 and 10000 iterations, APDs in nonreactive version are 38.7 and 20.3 while corresponding values in reactive version are 25.4 and 12.4, respectively. Furthermore, pure greedy algorithm (the case (=0) and random algorithm (the case (=1) give rise to worse results than other cases. If we compare the results of the first and the last rows of table 5, we see that pure greedy algorithm is better than random algorithm.
5.3.3. Impact of local search procedure 

Table 6 shows the results obtained from running the algorithm without local search procedure in which reactive version is considered.

	 Insert table 6 about here


If we compare the results of table 4 and 6, we surely conclude that for all priority rules and termination criteria, local search has improved APD. Of course, when we remove local search procedure, the CPU run times are a bit smaller than the case in which local search in included. The new average CPU run times corresponding to TC=100, 1000 and 10000 are 0.04, 0.39 and 4.51 seconds.

5.3.4. Impact of path-relinking procedure 

In order to evaluate the impact of path-relinking procedure, we removed it from algorithm and obtained new results, shown in table 7.
	Insert table 7 about here


Similar to previous section, we see that for all priority rules and termination criteria the results are worse than the results of table 4. Of course, it should be noticed that the CPU run times are decreased when PR is removed from the algorithm. The new average CPU run times corresponding to TC=100, 1000 and 10000 are 0.04, 0.35, 3.87 seconds.

5. Summary and Conclusions

In this paper, we presented the problem of minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling. We modeled the problem as a graph including conjunctive and disjunctive arcs and we also formulated it as a integer programming model. As solution approach, we developed a metaheuristic algorithm, based on GRASP and path-relinking, accompanied with a local search procedure. We considered two reactive and nonreactive versions of algorithm and showed, using computational experiments, that reactive version outperforms nonreactive version. Also, we developed seven priority rules to bias the random selection of elements from RCL. These priority rules are defined based on three characteristics of activities: precedence relations, durations and resource requirements. The computations experiments showed the best results are for the priority rule defined based on the combination of two characteristics, i.e. durations and precedence relations of activities. Moreover, we demonstrated the improving role of local search and path-relinking procedures using computational experiments. 
An important research direction that might be pursued in the future is extension of developed priority rules in this work. Also, developing other metaheuristic algorithms for problem defined in this paper can be an interesting research topic. 
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	Table 1. Resource information of the example project
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	Algorithm 1: Global algorithm structure

	1: ES=(
2: while TC not met do
3:    Build DL using BDL
4:    S=CPM(DL) 

5:    
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7:    else if 
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8:    else 

9:       select 
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12:   end else

13: end while
14: Return the best found solution


	Algorithm 2: Building direction list procedure

	1: Create CL and PM
2: Build PL based on priority rule pr  

3: Select ( from set ( randomly using probability vector P
4: DL=(
5: Calculate the incremental penalty cost 
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10:   Select an element e from the RCL randomly based on vector ( 
11:   Insert e in corresponding position of DL
12:   Update PM and CL
13:   Recalculate the incremental penalty costs;

14: end while
15: Update vector P
16: Return DL


	Algorithm 3: Local search procedure


	1: Let 
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8:    S=CPM(G)

9:    let Z as the objective function of graph G
10:    if 
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	Algorithm 4: Repairing procedure
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7: end for
8: Return G 

9: Return "infeasible".


	Algorithm 5: Path-relinking procedure

	1: get 
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11:   end if

12: end for
13: select randomly one member from GS such that its direction list is different from all 

      members of ES and add it to CS.

14: Let
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	Table 2. Priority rules 1 to 7

	Rule number
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	Table 3. Results of application of priority rules 1 to 7 on the example project

	Rule number
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	Table 4: APD for different priority rules and termination criteria

	TC
	

	10000
	1000
	100
	pr

	19.0
	30.3
	65.2
	1

	15.7
	27.3
	64.6
	2

	36.4
	58.6
	92.1
	3

	12.4
	25.4
	61.7
	4

	24.1
	41.8
	73.0
	5

	31.3
	53.3
	81.9
	6

	29.3
	45.1
	75.4
	7


	Table 5: APD for different values of ( and termination criteria

	TC
	

	10000
	1000
	100
	(

	52.3
	61.6
	90.6
	0.00

	-
	-
	78.9
	0.35

	20.3
	38.7
	-
	0.40

	68.7
	79.5
	107.8
	1.00


	Table 6: APD for the algorithm without local search procedure

	TC
	

	10000
	1000
	100
	pr

	25.9
	40.1
	84.7
	1

	25.4
	36.8
	81.0
	2

	47.6
	63.8
	105.4
	3

	21.1
	35.3
	75.8
	4

	32.7
	48.5
	87.3
	5

	36.9
	55.5
	97.3
	6

	41.2
	52.9
	92.6
	7


	Table 7: APD for the algorithm without path-relinking procedure

	TC
	

	10000
	1000
	100
	pr

	22.2
	31.9
	69.3
	1

	20.2
	28.8
	68.3
	2

	39.6
	59.5
	95.4
	3

	18.3
	28.0
	62.5
	4

	28.9
	43.5
	76.7
	5

	33.9
	54.7
	84.6
	6

	33.4
	47.7
	79.5
	7


� EMBED Equation.3  ���








� The order strength is the number of comparable intermediate activity pairs divided by the maximum number n(n-1)=2 of such pairs, and is a measure for the closeness to a linear order of the technological precedence constraints in C (cfr. Mastor, 1970).


� The resource factor shows how many numbers of resources are used in average by each of the activities. 
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Figure 2: Frequency of different values of &
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