A hybrid GRASP algorithm for minimizing total weighted resource tardiness penalty costs in scheduling of project networks
Mohammad Ranjbar

Department of Industrial Engineering, Faculty of Engineering
Ferdowsi University of Mashhad, Mashhad, Iran.
m_ranjbar@um.ac.ir
	Abstract

In this paper, we consider scheduling of project networks under minimization of total weighted resource tardiness penalty costs. In this problem, we assume constrained resources are renewable and limited to very costly machines and tools which are also used in other projects and are not accessible in all periods of time of a project. In other words, there is a dictated ready date as well as a due date for each resource such that no resource can be available before its ready date but the resources are allowed to be used after their due dates by paying penalty cost depending on the resource type. We also assume, there is only one unit of each resource type available and no activity needs more than it for execution. The goal is to find a schedule with minimal total weighted resource tardiness penalty costs. For this purpose, we present a hybrid metaheuristic procedure based on the greedy randomized adaptive search algorithm and path-relinking algorithm. We develop reactive and non-reactive versions of the algorithm. Also, we use different bias probability functions to make our solution procedure more efficient. The computational experiments show the reactive version of the algorithm outperforms the non-reactive version. Moreover, the bias probability functions defined based on the duration and precedence relation characteristics give better results than other bias probability functions.
Key words: Project scheduling; weighted resource tardiness; GRASP; path-relinking

1. Introduction

The goal of the resource-constrained project scheduling problem (RCPSP) is to minimize the duration of a project subject to finish-start precedence constraints and renewable resource constraints. It is shown in Blazewicz et al. [1] that the RCPSP, as a job-shop generalization, is NP-hard in the strong sense. A large number of exact and heuristic procedures have been proposed to construct workable baseline schedules for this problem; see Demeulemeester and Herroelen [2], Neumann et al. [3] for recent overviews and Herroelen [4] for a discussion on the link between theory and practice.

In some projects, some expensive resources like especial types of crane, tunnel boring machines, very expert humans and etc. are often hired out of the project. Companies that lease these costly resources have a plan for leasing them. This schedule dictates ready dates and due dates for customers, i.e. the companies needing them. We assume these types of resources are constrained renewable and are not available in all periods of time of a project horizon. We also assume only these resources are constrained while other resources are unlimited. In most of the projects, usually one unit of each expensive resource type is hired and no activity needs more than it for execution. For each resource type, we consider a ready date, a due date and a penalty cost. No resource can be accessible before its ready date but these resources are permitted to be released after their due dates by paying penalty costs. The goal is to find a schedule with minimal total weighted resource tardiness penalty costs. Thus, we face a RCPSP under minimization of total weighted resource tardiness penalty cost, shown by RCPSP-TWRTPC.
The RCPSP-TWRTPC was introduced by Ranjbar et al. [5] and they presented a branch-and-bound algorithm for it. Other related problems proposed in the literature are scheduling problems in fields of project scheduling and machine scheduling with objective functions linked to the tardiness. In all of these problems, the issue of tardiness is proposed for activities or jobs and not for resources or machines. Vanhoucke et al. [6] have developed a branch-and-bound (B&B) algorithm accompanied with an exact recursive search procedure for the RCPSP under earliness/tardiness objective. Also, Nadjafi and Shadrokh [7] developed a B&B algorithm for the weighted earliness-tardiness project scheduling problem with generalized precedence relations. We mention that we are also working on a B&B algorithm for the RCPSP-TWRTPC at the present time.
The contributions of this article are threefold: (1) we introduce and formulate the RCPSP-TWRTPC; (2) we develop reactive and nonreactive versions of a hybrid metaheuristic for the proposed problem; (3) we develop seven biased probability functions to make algorithm more efficient and show, using computational results, that biased probability functions defined on the basis of duration and precedence relation characteristics outperforms others.
The remainder of this article is organized as follows. Problem modeling and formulation are provided in Section 2. Section 3 presents our solution representation while section 4 is devoted to our metaheuristic algorithm. The computational experiments are presented in section 5. Finally, summary and conclusions are given in Section 6.

2. Problem modeling and formulation

The RCPSP-TWRTPC can be represented by a disjunctive graph
[image: image1.wmf](

)

D

C

N

G

,

,

=

. Graph G has an activity-on-node (AON) representation in which
indicates the set of activities (nodes) where dummy activities 0 and n+1 represent start and end of the project. The set of conjunctive arcs
 consists of arcs representing technical finish-to-start precedence constraints among activities where
 implies activity j can be started after finishing of activity i. Let
[image: image9.wmf]{

}

m

R

,...,

2

,

1

=

 be the set of constrained renewable resources and the set of activities which need one unit of resource
[image: image12.wmf]R

r

Î

 for execution. For each pair of activities
[image: image13.wmf]m

r

N

j

i

r

,...,

1

,

,

=

Î

. There is a disjunctive arc
[image: image14.wmf]j

i

®

 between nodes i and j (If there is a conjunctive arc (or path) between nodes i and j which require a common resource, the disjunctive arc
[image: image15.wmf]j

i

®

 is not needed). Thus we present the set of disjunctive arcs as
[image: image16.wmf]{

}

r

N

j

i

R

r

j

i

j

i

j

i

D

Î

Î

$

<

«

=

,

:

,

,

;

,

,
since availability of each resource is at most one unit in each period of time and two activities i and j where
can not be processed in parallel. For each activity i, the parameter indicates its duration where
[image: image21.wmf]0

1

0

=

=

+

n

d

d

. In addition, for each resource r,
[image: image22.wmf]r

r

and
[image: image23.wmf]r

d

 and show the ready date, due date and weight of this resource, respectively. In order to embed the resource ready dates in the graph representation, we add one node corresponding to each resource to the project network. For the resource r, this node displays an activity with duration

 which is direct successor of the start dummy activity and direct predecessor of every activity
[image: image28.wmf]r

N

i

Î

. We consider these arcs as the elements of the set of conjunctive arcs C.
Table 1 shows the resource information of a RCPSP-TWRTPC instance with n=6 real activities, m=2 resources and the corresponding graph is depicted in figure 1. In this figure, the number shown above each node indicates activity duration and the number(s) below indicate the resources required for activity execution. The nodes labeled (and (correspond to ready times of resources 1 and 2, respectively. Precedence relations of each of these nodes with dummy node 0 and its successors (the nodes which require these nodes) are depicted with bold arcs. Also, the disjunctive arcs are depicted with dashed lines while conjunctive arcs are shown as regular arcs.
	Insert table 1 about here

	Insert figure 1 about here

Any solution of a RCPSP-TWRTPC instance is a vector
[image: image29.wmf](

)

n

s

s

s

,...,

,

2

1

=

S

where is integer and shows the start time of activity i. Given a policy for scheduling, such as earliest time schedule, this solution S is equivalent to a selection
[image: image32.wmf])

(

D

s

, denoting a selection of disjunctive arcs from D, as long as the selection
[image: image33.wmf])

(

D

s

 has one and only one arc from every pair
[image: image34.wmf]j

i

«

, and the resulting graph
[image: image35.wmf](

)

)

(

,

,

D

C

N

G

s

=

 is not cyclic. Conversely, any selection satisfying the above properties corresponds to a feasible schedule. Let
[image: image39.wmf])

,

(

j

i

L

 denote the length of the critical path (longest path) from node i to node j in graph
 (if there is no path between i and j, then
is not defined). The (earliest) finish time
[image: image44.wmf]i

i

i

d

s

f

+

=

of activity i is equal to
[image: image45.wmf])

,

0

(

i

L

 and can be
computed using the algorithm of Bellman [8] with complexity.The release time of resource r shown by
[image: image48.wmf]r

c

 equals to
[image: image49.wmf]{

}

i

N

i

r

f

c

r

Î

=

max

and the tardiness of this resource is
. The total weighted resource tardiness penalty cost is .
The RCPSP-TWRTPC described above can be formulated as the following integer programming using variables
[image: image55.wmf]r

r

i

T

c

s

,

,

 and
[image: image56.wmf]ij

X

 where for all
[image: image57.wmf]1

,

,

=

Î

ij

X

D

j

i

 if and
[image: image60.wmf]0

=

ij

X

 if.
	
[image: image63.wmf]å

=

=

m

r

r

r

T

w

Z

1

min

	(1)

	Subject to:
	

	
[image: image64.wmf]r

i

i

r

N

i

m

r

d

s

c

Î

=

+

³

;

,...,

1

for

	(2)

	
[image: image65.wmf]m

r

c

T

r

r

r

,...,

1

for

=

-

³

d

	(3)

	
[image: image67.wmf]m

r

T

r

,...,

1

for

0

=

³

	(4)

	
[image: image69.wmf]r

r

i

N

i

m

r

s

Î

=

³

;

,...,

1

for

r

	(5)

	
[image: image70.wmf](

)

forall,

jii

ssdijC

-³Î

	(6)

	
[image: image71.wmf](

)

D

j

i

X

M

d

s

s

ij

i

i

j

Î

-

-

³

-

,

all

for

1

	(7)

	
[image: image72.wmf]forall,

ijjij

ssdMXijD

-³-Î

	(8)

	
[image: image73.wmf]{

}

D

j

i

X

m

r

n

i

N

T

c

s

ij

r

r

i

Î

Î

=

+

=

Î

+

,

all

for

1

,

0

and

,...,

2

,

1

;

1

,...,

1

,

0

for

,

,

	(9)

The objective function (1) represents the minimization of the total weighted resource tardiness penalty costs. Constraint (2) shows that the release time of each resource is not less than the finish time of each activity which requires that resource. Constraints (3) and (4) ensure that
[image: image74.wmf]r

T

 is equal to

. Constraint (5) makes the starting times of all activities greater than or equal to the ready dates of their corresponding resources. Constraint (6) represents the technical precedence relations or conjunctive constraints while constraints (7) and (8) relate to the resource or disjunctive constraints. Finally, constraint (9) ensure that variables
[image: image77.wmf]r

i

c

s

,

 and

 are non-negative integers and
[image: image80.wmf]ij

X

 is a binary variable.
3. Solution representation

Our constructive heuristic algorithm uses a schedule representation to encode a project schedule and a schedule generation scheme to translate the schedule representation to a schedule S. In our problem, the schedule generation scheme determines how a feasible schedule is constructed by assigning starting times to the activities, whereby disjunctive arcs are converted to conjunctive arcs by schedule representation.
We represent each solution of a RCPSP-TWRTPC using a binary list called direction list (DL) and shown by
[image: image81.wmf](

)

D

e

e

DL

,...,

1

=

. Each
[image: image82.wmf]k

e

 in DL represents a direction for disjunctive arc
[image: image83.wmf]D

j

i

Î

,

 and is a binary variable. It is one if we consider disjunctive arc
[image: image84.wmf]j

i

,

as conjunctive arc
[image: image85.wmf](

)

j

i

,

 and zero if
[image: image86.wmf]j

i

,

is considered as
[image: image87.wmf](

)

i

j

,

. It should be noted that to make DL, we first sort elements of
[image: image88.wmf]{

}

j

i

D

,

=

 on the basis of non-decreasing order of i in
[image: image89.wmf]j

i

,

 and for ties in increasing order of j. Then
[image: image90.wmf]k

e

 of DL relates to the
[image: image91.wmf]th

k

sorted
[image: image92.wmf]j

i

,

,
[image: image93.wmf]|

|

,...,

1

D

k

=

. For the example project, we have
[image: image94.wmf]{

}

6

,

5

,

5

,

4

,

5

,

3

,

4

,

3

,

5

,

2

,

4

,

1

,

2

,

1

=

D

 and the optimal solution, found by enumeration, of this project is obtained with
[image: image95.wmf](

)

1

,

1

,

0

,

0

,

1

,

1

,

1

7

6

5

4

3

2

1

=

=

=

=

=

=

=

=

e

e

e

e

e

e

e

DL

 corresponding to the following arcs: (1,2), (1,4), (2,5), (4,3), (5,3), (4,5) and (5,6).
Each solution of the RCPSP-TWRTPC can be easily translated to a schedule S using the critical path method (CPM), shown by S=CPM(DL). The optimal solution corresponding to the above mentioned DL is S=(1,4,17,6,12,21) with 8 units of tardiness penalty cost.
4. GRASP and path-relinking
Below, we discuss GRASP and path-relinking as a general heuristic procedure (Section 4.1) and describe the overall structure of our search procedure for RCPSP-TWRTPC-solutions (Section 4.2).
4.1. General overview
In the following we briefly describe general GRASP and path-relinking procedures.

4.1.1. GRASP

A greedy randomized adaptive search procedure (GRASP) is a multi-start and iterative process (Aiex et al. [9]; Feo and Resende [10]; Feo et al. [11]). Each GRASP-iteration consists of two phases: in a construction phase, a feasible solution is produced and, in a local-search phase, a local optimum in the neighborhood of the constructed solution is sought. The best overall solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one element at a time. The basic construction phase in GRASP is similar to the semi-greedy heuristic proposed independently by Hart and Shogan [12]. At each construction iteration, the choice of the next element to be added is determined by ordering all candidate elements (i.e. those that can be added to the solution) in a candidate list with respect to a greedy function. This function measures the benefit of selecting each element. The heuristic is adaptive because the benefits associated with every element are updated at each iteration of the construction phase to reflect the changes brought on by the selection of the previous element. The probabilistic component of a GRASP resides in the fact that we choose one of the best candidates in the list but not necessarily the top candidate; the list of best candidates is called the restricted candidate list. It is almost always beneficial to apply a local-search procedure to attempt to improve each constructed solution.
4.1.2. Path-relinking

Path-relinking is an enhancement to the basic GRASP procedure, leading to significant improvements in solution quality. Path-relinking was originally proposed by Glover [13] as an intensification strategy exploring trajectories connecting elite solutions obtained by tabu search or scatter search (see Glover and Laguna [14] and Glover et al. [15]). Starting from one or more elite solutions, paths in the solution space leading towards other elite solutions are generated and explored in the search for better solutions. This is accomplished by selecting moves that introduce attributes contained in the guiding solutions. Path-relinking may be viewed as a strategy that seeks to incorporate attributes of high quality solutions, by favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strategy applied to each locally optimal solution, was first proposed by Laguna and Marti [16]. It was followed by several extensions, improvements, and successful applications (see Ribeiro et al. [17], Resennde et al. [18] and Alvarez et al. [19]).
4.2. Adapting GRASP and path-relinking to our setting

4.2.1. Global structure of the algorithm

The pseudo-code of global structure of our GRASP and path-relinking implementation is illustrated in algorithm 1. Our basic algorithm maintains a set of elite solutions (ES) to combine them in step 9 using path-relinking algorithm. This set is let an empty set in the first step. A while-loop is repeated until termination criterion (TC), a specified number of iterations, is met. At the beginning of this loop, a DL is built using building direction list (BDL) procedure (section 4.2.2). Next, generated DL is evaluated using CPM and is improved using local search (LS) procedure (section 4.2.3). In steps 6 to 11, we decide to add DL to the ES or not. For this purpose, we define Max_Elite as the maximum size of ES (size of ES is shown by |ES|) and
[image: image96.wmf](

)

)

(

CPM

),

(

CPM

i

DL

DL

D

as the difference between DL and
[image: image97.wmf]i

DL

, which is the number of different start times for identical activities in CPM(DL) and
[image: image98.wmf])

(

CPM

i

DL

 divided by n. The first condition for each DL to be included in ES is that it should be different from all elements in ES. This condition is checked in step 6 and if it is not satisfied, we go to the end of while loop at step 13 and discard generated DL. If the first condition is assured, the next condition is that the size of ES to be smaller than Max_Elite. If DL is not added to ES in step 7, we should follow steps 8 to 12. In step 8, we select a direction list from ES on the basis of a biased random sampling strategy. Random sampling is biased using probability vector
[image: image99.wmf](

)

Elite

Max

q

q

_

1

,...,

=

Q

 in which
[image: image100.wmf]å

Î

=

ES

j

j

i

i

b

b

q

 and
[image: image101.wmf](

)

i

i

i

Z

DL

DL

b

)

(

CPM

),

(

CPM

D

=

where
[image: image102.wmf]i

DL

 is the
[image: image103.wmf]th

i

element of ES and
[image: image104.wmf]i

Z

 stands for the value of the objective function for the solution
[image: image105.wmf])

(

i

DL

CPM

 for i=1,..,Max_Elite. For each
[image: image106.wmf]i

DL

, having smaller objective functions and higher differences with DL gives rise to its selection chance. The selected direction list, shown by
[image: image107.wmf]L

D

¢

, is combined with DL using path-relinking (PR) procedure developed by Ranjbar et al. [20] (section 4.2.4). In step 11, we compare the output of PR procedure with the worst element of ES, shown by
[image: image108.wmf]L

D

¢

¢

. If
[image: image109.wmf]L

D

¢

is better than
[image: image110.wmf]L

D

¢

¢

, it is replaced with
[image: image111.wmf]L

D

¢

¢

. When TC is met, the best found solution is returned.
	Insert Algorithm 1 about here

4.2.2. Building direction list procedure
This is an iterative algorithm and in each iteration at least one of the elements of
[image: image112.wmf](

)

D

e

e

DL

,...,

1

=

 is set to 0 or 1. For each unset element of DL, in each iteration two candidate elements
[image: image113.wmf]{

}

1

,

0

are defined in a candidate list CL. Thus, at the beginning CL has
[image: image114.wmf]|

|

2

D

´

elements. Let in an iteration, u be the number of unset elements of DL. Consequently, there are a total of u zeros and total of u ones in the corresponding CL. One of these zeros or ones is selected, as explained in the algorithm 1. If it is a zero then its corresponding element in D is set to zero and if it is a one, the corresponding element in DL is set to one. To assure that the network resulting from the generated DL is not acyclic, a path matrix PM is defined and used in the algorithm. PM is an (m+n+2)(m+n+2) of 0,1 in which
[image: image115.wmf]1

)

,

(

=

j

i

PM

 iff there exists a path from node i to node j and
[image: image116.wmf]0

)

,

(

=

j

i

PM

otherwise.
	Insert Algorithm 2 about here

In each iteration of BDL, one element is selected from a restricted candidate list (RCL) to be set in DL. This element is selected by a biased random procedure. In order to make bias random selection of elements, we define seven rules and name each of them a priority rule (pr). Priority list (PL), built in step 2, is a sorting of disjunctive arcs based on priority rule pr, see section 4.3. In step 3, we determine the algorithm to be reactive or nonreactive by selecting value(s) for (. If (is fixed, we have nonreactive version of the algorithm but if at each iteration, (is selected from a discrete set of possible values, the reactive version of the algorithm is chosen. In the reactive version, the selection of (is guided by the solution values found in the previous iterations. One way to accomplish this is to use the rule proposed by Prais and Ribeiro [21]. Let
[image: image117.wmf]{

}

k

a

a

,...,

1

=

Y

be the set of possible values for (. In each iteration,
[image: image118.wmf]i

a

 has the chance of
[image: image119.wmf]i

p

 of being selected given by probability vector
[image: image120.wmf]{

}

k

p

p

,...,

1

=

P

. Initially
[image: image121.wmf]k

i

k

p

i

,...,

1

;

1

=

=

. Furthermore, let
[image: image122.wmf]*

Z

be the objective function value of the best found solution and let
[image: image123.wmf]i

A

 be the average objective function value of all solutions found using
[image: image124.wmf]k

i

i

,...,

1

;

=

=

a

a

. The selection probabilities are updated (step 15) by taking
[image: image125.wmf]å

=

=

k

j

j

i

i

a

a

p

1

, with
[image: image126.wmf]i

i

A

Z

a

*

=

 for i=1,…,k. In step 4, we initialize DL as an empty set. In the next step, we calculate the incremental tardiness penalty cost corresponding to all
[image: image127.wmf]CL

e

Î

, shown by Z(e). In continue, a while loop is repeated until CL is not empty. If
[image: image128.wmf]min

Z

and
[image: image129.wmf]max

Z

show the minimum and maximum of incremental tardiness penalty cost for all
[image: image130.wmf]CL

e

Î

, we define RCL as
[image: image131.wmf]{

}

)

(

)

(

|

min

max

min

Z

Z

Z

e

Z

CL

e

RCL

-

+

£

Î

=

a

. In step 10, we select an element from RCL by a biased random procedure, proposed by Bresina [22]. For this purpose, we rank the elements of RCL based on priorities specified by PL in which identical rank is considered for both 1 and 0 of each disjunctive arc. Let
[image: image132.wmf])

(

e

r

be the rank of
[image: image133.wmf]RCL

e

Î

, we define
[image: image134.wmf](

)

RCL

p

p

,...,

1

=

π

 as the probability vector for selecting e from RCL in step 10, where
[image: image135.wmf]e

p

is
	
[image: image136.wmf](

)

å

Î

¢

¢

=

RCL

e

e

e

r

e

r

)

(

1

)

(

1

p

	(10)

In the next step, selected member element
[image: image137.wmf]RCL

e

Î

 is inserted in corresponding element of DL.
In step 11, the CL and PM are updated as follows. First, we remove from CL the element which contains e and also the element indicating opposite direction for the disjunctive arc associated to the selected element e. Second, if selected element e corresponds to arc
[image: image138.wmf](

)

j

i

,

, we update PM using four following rules: a)
[image: image140.wmf](

)

1

,

=

j

i

PM

, b), c)

[image: image142.wmf](

)

)

(

;

1

,

i

pred

l

i

l

PM

Î

"

=

 QUOTE [image: image143.png]

 d) . In these four rules, pred(i) and suc(j) indicate all (direct and indirect) predecessors and successors of activity i respectively, initialized based on set C and is updated whenever a new conjunctive arc is added. Rule (a) shows that arc
[image: image150.wmf]j

i

®

 builds a path between every node of pred(i) and every node of suc(j). Also, for each [image: image148.wmf]j

i

®

 builds a path between node i and every node of suc(j) while rule (c) shows that this new added arc creates a path between every node of pred(i) and node j. Finally, the last rule demonstrates that arc [image: image146.wmf]j

i

®

 creates a path between nodes i and j. Also, rule (b) indicates that arc that
[image: image152.wmf](

)

j

i

PM

,

has been changed after updating, we remove both 0 and 1 elements corresponding to this disjunctive arc from CL and add the element corresponding to
[image: image153.wmf](

)

1

,

=

j

i

PM

 to DL. In step 13, the incremental tardiness penalty costs are recalculated and final DL is returned in step 16.
4.2.3. Local search procedure
The local search procedure is illustrated by pseudo-code in algorithm 3. Let
[image: image154.wmf]*

G

 be the input graph with direction list
[image: image155.wmf]*

DL

. In the first step, graph
[image: image156.wmf]*

G

, corresponding solution
[image: image157.wmf](

)

*

*

CPM

G

=

S

 and objective function
[image: image158.wmf]*

Z

 are taken as inputs. Next, we change the value of each element
[image: image159.wmf]*

DL

e

i

Î

 from zero to one or vice versa while other elements are unchanged. This changes the direction of related conjunctive arc and is shown by
[image: image160.wmf])

(

i

e

inv

. In step 4, we update graph
[image: image161.wmf]*

G

 and check its feasibility using Floyd-Warshal algorithm (Lawler [23]). If
[image: image162.wmf]*

G

is cyclic, we call repairing procedure (RP), shown in algorithm 4, to make
[image: image163.wmf]*

G

 feasible. Of course, the output of RP is not always a feasible solution and in this case, we go to the next i in step 2. In the repairing procedure, we change values of some
[image: image164.wmf]DL

e

j

Î

except j=i to remove all loops from
[image: image165.wmf]*

G

. We show the output graph of RP by G. Also, if changing
[image: image166.wmf]i

e

 does not result in a cyclic graph, we only let
[image: image167.wmf]*

G

G

=

 in step 8.
	Insert Algorithm 3 about here

This procedure is repeated for all elements of
[image: image168.wmf]*

DL

 and whenever an improvement is obtained, the input solution
[image: image169.wmf]*

S

 and its corresponding objective function
[image: image170.wmf]*

Z

are updated. Finally, the best found solution in neighborhood of
[image: image171.wmf]*

S

or itself is returned as output solution.
In the RP, the inputs are graph
[image: image172.wmf](

)

)

(

,

,

*

*

D

C

N

G

s

=

 where
[image: image173.wmf])

(

*

D

s

is specified using
[image: image174.wmf]*

DL

and index i. First of all, we check possibility of repairing by letting
[image: image175.wmf])

(

i

e

arc

C

C

U

=

 where
[image: image176.wmf])

(

i

e

arc

 denotes the directed arc corresponding to
[image: image177.wmf]i

e

. Since the graph in which none of disjunctive arcs are fixed is acyclic, existence of any loop in
[image: image178.wmf](

)

C

N

G

,

=

 implies that no feasible solution can be found when
[image: image179.wmf])

(

i

e

arc

is included in the project network. In this case, we return "infeasible" as output; otherwise, based on order specified by
[image: image180.wmf]*

DL

, we include directed arcs corresponding to
[image: image181.wmf]*

DL

e

j

Î

one by one in graph G. Whenever a loop is detected, we should include
[image: image182.wmf]))

(

(

j

e

inv

arc

 instead of
[image: image183.wmf])

(

j

e

arc

in graph G.
	Insert Algorithm 4 about here

4.2.4. Path-relinking procedure
The idea of our path-relinking procedure, illustrated in algorithm 5, is taken from Ranjbar et al.2009 [20]. In the first step, we get two direction lists
[image: image184.wmf]DL

 and
[image: image185.wmf]L

D

¢

as inputs. In the second step, we assign
[image: image186.wmf]DL

 to initial direction list (
[image: image187.wmf]in

DL

) and
[image: image188.wmf]L

D

¢

 to guiding direction list (
[image: image189.wmf]gu

DL

). This assignment is exchanged in step14 and procedure is repeated again. Also, we define child set CS as the selected children using PR procedure and let it as an empty set in step 2. Next, we let graph set GS, a set of generated graphs, as an empty set. In continue, we construct graphs
[image: image190.wmf]in

G

 and
[image: image191.wmf]gu

G

corresponding to direction lists
[image: image192.wmf]in

DL

 and
[image: image193.wmf]gu

DL

. Steps 5 to 12 show a loop in which for i=1 to |D|, we check whether
[image: image194.wmf]gu

i

in

i

e

e

¹

or
[image: image195.wmf]gu

i

in

i

e

e

=

. If
[image: image196.wmf]gu

i

in

i

e

e

¹

, we change
[image: image197.wmf]in

i

e

 to
[image: image198.wmf]gu

i

in

i

e

e

=

for graph
[image: image199.wmf]in

G

 in step 8. Next, we check the existence of loop in
[image: image200.wmf]in

G

. If it is the case, we apply the RP with following changes: remove steps 1,2,3 and 9 from RP and consider step 4 for
[image: image201.wmf]D

i

j

,...,

1

+

=

. This is because
[image: image202.wmf]gu

G

is acyclic and
[image: image203.wmf]gu

j

in

j

e

e

=

 for
[image: image204.wmf]i

j

,...,

1

=

 , and to make
[image: image205.wmf]in

G

an acyclic graph, we need change some values of
[image: image206.wmf]j

e

 for
[image: image207.wmf]i

j

>

. In step 10, repaired graph is added to GS. At the beginning of step 13, one path of path-relinking has been made. In step 15, one solution is selected from this path and is added to CS. The selected solution that is a graph should have direction list different from all members of ES. Steps 3 to 13 are repeated by exchanging role of initial and guiding direction lists. After step 14, CS has two members and we select the better one using CPM in step 15. Selected member is returned as the output of PR procedure in step 16.
	Insert Algorithm 5 about here

4.3. Priority rules
In this section, we develop seven priority rules to establish the priorities of disjunctive arcs in PL where priority values are determined by
[image: image208.wmf]{

}

D

j

i

ij

Î

=

,

;

l

λ

. Priority rules are developed based on three characteristics of activities, i.e. precedence relations, durations and resource requirements. In each priority rule, we define a value
[image: image209.wmf]ij

l

 for each disjunctive arc
[image: image210.wmf]j

i

«

and the sequence of arcs in PL is made by non-increasing order of
[image: image211.wmf]ij

l

 values. As a tie breaker,
[image: image212.wmf]ij

l

 with smaller i and then smaller j gets priority.
Table 2 shows the formula of each priority rule and the contributing characteristics. In the priority rule 1, only precedence relations of activities are contributing. In this rule,
[image: image213.wmf]ij

l

equals the summation of the total number of successors of activities i and j. Similar to priority rule 1, in priority rules 2 and 3 only one characteristic is contributing. In priority rule 2,
[image: image214.wmf]ij

l

 equals the summation of the durations of activities i and j while in priority rule 3 it equals the summation of
[image: image215.wmf]r

q

 values for all
[image: image216.wmf]i

R

r

Î

 or
[image: image217.wmf]j

R

 where
[image: image218.wmf](

)

r

r

r

r

w

r

d

q

-

=

 and
[image: image219.wmf]i

R

 denotes the set of required resources for execution of activity
[image: image220.wmf]N

i

Î

. Each one of priority rules 4, 5 and 6 is based on the contribution of two characteristics. In priority rule 4, the precedence relations and durations are contributing, the summation of tails of activities i and j is considered as
[image: image221.wmf]ij

l

. Tail of activity
[image: image222.wmf]N

i

Î

, shown by
[image: image223.wmf]i

q

, is a lower bound for the time period between the completion of activity i and the project deadline and is calculated using equation (11).

	
[image: image224.wmf](

)

{

}

C

j

i

q

d

q

j

j

i

Î

+

=

,

;

max

	(11)

Equation (11) requires initialization which is given by
[image: image225.wmf]0

1

=

+

n

q

.

Two characteristics, precedence relations and resource requirements are contributing in rule 5 in which
[image: image226.wmf]ij

l

 equals the summation of

 values for all

 where k is representative of all activities belonging to at least one of the pred(i), pred(j), suc(i) or suc(j) and requiring at least one common resource with activity i and j. Rule 6 is based on the combination of two characteristics, durations and resource requirements, while in the last priority rule all three characteristics are contributed.

	Insert table 2 abut here

Table 3 illustrates the result of application of each priority rule on the example project. In this table, set (and its corresponding priorities list (PL) of the disjunctive arcs are shown for each rule.
	Insert table 3 abut here

5. Computational experiments

5.1. Benchmark problem sets
We have coded the procedure in Visual C++6 and performed all computational experiments on a PC Pentium IV 3GHz processor with 1024 MB of internal memory. In order to evaluate the performance of our algorithm, we generated test problems using the random network generator RanGen (Demeulemeester et al. [24]). The test problems are generated for full factorial of three parameters, i.e. the number of activities (n), the network shape parameter, order strength
 (OS), and the resource factor
 (RF). We consider five values 20, 22, 24, 26 and 28 for n, three values 0.2, 0.35 and 0.5 for OS and three values 0.1, 0.2 and 0.3 for RF. For each combination of n, OS and RF, we generate three test instances giving rise to 135 test instances. We also set the number of resource to m=3.
 Also, for each resource r, we select ,
[image: image233.wmf]r

d

 and
[image: image234.wmf]r

w

 randomly from discrete uniform distributions
[image: image235.wmf][

]

n

U

,

1

,
[image: image236.wmf]ú

û

ù

ê

ë

é

´

´

+

å

å

Î

Î

r

r

N

i

i

N

i

i

r

d

d

U

2

.

1

,

8

.

0

r

 and
respectively.
We run our algorithm for three values of TC as TC=100, 1000 and 10000.
5.2. Parameter setting

One of the benefits of GRASP is that it has smaller number of parameters than other metaheuristics. Since we have used reactive version of GRASP, the parameter (is set automatically. For this purpose, we consider set (as (={0, 0.05, 0.1, …, 1} in which parameter (is changed in a range between zero and one with step size 0.05. The case (=0 corresponds to a pure greedy algorithm, while (=1 is equivalent to a random construction. Figure 2 shows the frequency of different values of (used in TC iterations when priority rule 4 (the best priority rule) is used. All three curves have a bell-shape in which maximum frequency for TC=100 occurs for (=0.35 while for TC=1000 and 100000 occur for (=0.4.
	Insert figure 2 about here

5.3. Comparative Computational results

In this section, we first compare the results of the algorithm obtained based on different priority rules. Next, a comparison between reactive and nonreactive versions of the algorithm is done. In continue, we investigate the impact of local search and path-relinking procedures. Comparison criterion is average percent deviation (APD) from optimal solutions, obtained by a very long run of an enumerative scheme in which two opposite directions for each disjunctive arc is considered.

5.3.1. Impact of priority rules

Table 4 shows the APD for solutions using different priority rules and three termination criteria. The results show a consistent ranking of priority rules for different values of TC. This rank is 4, 2, 1, 5, 7, 6 and 3. Priority rule 4 that can be considered as a combination of priority rules 1 and 2 has the smallest APD. After that, priority rules 2 and 1 have the second and third smallest APD, respectively. Priority rule 3, based on resource requirements, has largest APD. It can be concluded that priority rules in which durations and precedence relations of activities are contributing have better results than priority rules in which resource requirements of activities are contributing. The average CPU run time for TC=100, 1000 and 10000 are 0.05, 0.63 and 6.84 seconds.
	Insert table 4 about here

5.3.2. Comparison of reactive and nonreactive versions of the algorithm
In this section, we compare two versions of our algorithm, reactive and nonreactive. For this comparison, we consider only priority rule 4, the best priority rule, and set parameter (for different values of TC based on fine tuning. For nonreactive version, we set (to 0.35 when TC=100 and set it to 0.4 when TC=1000 and 10000. The results of nonreactive version of the algorithm in which (has a fixed value are shown in table 5. Also, we have shown in this table the results of the cases (=0 and 1.
	Insert table 5 about here

The results show reactive version outperforms nonreactive version of the algorithm. When we consider TC=100 iterations, APD in nonreactive version is 78.9 while this value in reactive version is 61.7, shown in table 4. Also, when we set TC to 1000 and 10000 iterations, APDs in nonreactive version are 38.7 and 20.3 while corresponding values in reactive version are 25.4 and 12.4, respectively. Furthermore, pure greedy algorithm (the case (=0) and random algorithm (the case (=1) give rise to worse results than other cases. If we compare the results of the first and the last rows of table 5, we see that pure greedy algorithm is better than random algorithm.
5.3.3. Impact of local search procedure

Table 6 shows the results obtained from running the algorithm without local search procedure in which reactive version is considered.

	 Insert table 6 about here

If we compare the results of table 4 and 6, we surely conclude that for all priority rules and termination criteria, local search has improved APD. Of course, when we remove local search procedure, the CPU run times are a bit smaller than the case in which local search in included. The new average CPU run times corresponding to TC=100, 1000 and 10000 are 0.04, 0.39 and 4.51 seconds.

5.3.4. Impact of path-relinking procedure

In order to evaluate the impact of path-relinking procedure, we removed it from algorithm and obtained new results, shown in table 7.
	Insert table 7 about here

Similar to previous section, we see that for all priority rules and termination criteria the results are worse than the results of table 4. Of course, it should be noticed that the CPU run times are decreased when PR is removed from the algorithm. The new average CPU run times corresponding to TC=100, 1000 and 10000 are 0.04, 0.35, 3.87 seconds.

5. Summary and Conclusions

In this paper, we presented the problem of minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling. We modeled the problem as a graph including conjunctive and disjunctive arcs and we also formulated it as a integer programming model. As solution approach, we developed a metaheuristic algorithm, based on GRASP and path-relinking, accompanied with a local search procedure. We considered two reactive and nonreactive versions of algorithm and showed, using computational experiments, that reactive version outperforms nonreactive version. Also, we developed seven priority rules to bias the random selection of elements from RCL. These priority rules are defined based on three characteristics of activities: precedence relations, durations and resource requirements. The computations experiments showed the best results are for the priority rule defined based on the combination of two characteristics, i.e. durations and precedence relations of activities. Moreover, we demonstrated the improving role of local search and path-relinking procedures using computational experiments.
An important research direction that might be pursued in the future is extension of developed priority rules in this work. Also, developing other metaheuristic algorithms for problem defined in this paper can be an interesting research topic.
References
[1] J. Blazewicz, J. Lenstra, A.H.G. Rinnooy-Kan, Scheduling subject to resource constraints- classification and complexity, Discrete Applied Mathematics 5 (1983) 11- 24.

[2] E. Demeulemeester, W. Herroelen, Project Scheduling: A Research Handbook, Kluwer Academic Publishers (2002).

[3] K. Neumann, C. Schwindt, J. Zimmermann, Project Scheduling with Time Windows and Scarce Resources, Springer (2002).

[4] W. Herroelen, Project scheduling-theory and practice, Production and Operations Management 14 (2005) 413-432.
[5] M. Ranjbar, M. Khalilzadeh, F. Kinafar, K. Etminani, An optimal procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem, Computers and Industrial Engineering, To appear.
[6] M. Vanhoucke, E. Demeulemeester, W. Herroelen, An exact procedure for the resource-constrained weighted earliness-tardiness project scheduling problem, Annals of Operations Research 102 (2001) 79-196.

[7] B.A. Nadjafi, S. Shadrokh, A branch and bound algorithm for the weighted earliness-tardiness project scheduling problem with generalized precedence relations, Scientia Iranica, 16 (2009) 55-64.
[8] R.E. Bellman, On a routing problem, Quarterly Applied Mathematics, 16 (1985) 87-90.

[9] R.M. Aiex, M.G.C. Resende, C.C. Ribeiro, Probability distribution of solution time in GRASP: an experimental investigation, Journal of Heuristics, 8 (2002) 343-373.
[10] T.A. Feo, M.G.C. Resende, Greedy randomized adaptive search procedures, Journal of Global Optimization, 6 (1995) 109-133.
[11] T.A. Feo, M.G.C. Resende, S. Smith, A greedy randomized adaptive search procedure for maximum independent set, Operations Research, 42 (1994) 860-878.
[12] J.P. Hart, A.W. Shogan, Semi-greedy heuristics: an empirical study, Operations Research Letters, 6 (1987) 107-114.
[13] F. Glover, Tabu search and adaptive memory programming—advances, applications and challenges. In: R.S. Barr, R.V. Helgason and J.L. Kennington (eds.), Interfaces in Computer Science and Operations Research. Kluwer, (1996) 1–75.
[14] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers (1997).

[15] F. Glover, M. Laguna, R. Marti, Fundamentals of scatter search and path relinking, Control and Cybernetics, 39 (2000) 653–684.
[16] M. Laguna, R. Marti, GRASP and path relinking for 2-layer straight line crossing minimization, INFORMS Journal on Computing, 11 (1999) 44–52.
[17] C.C. Ribeiro, E. Uchoa, R.F. Werneck, A hybrid GRASP with perturbations for the Steiner problem in graphs, INFORMS Journal on Computing, 14 (2002) 228–246.

[18] M.G.C. Resennde, R. Marti, M. Gallego, A. Duarte, GRASP and path-relinking for the max-min diversity problem, Computers & Operations Research, 37 (2010) 498-508.
[19] R. Alvarez-Valdes, E. Crespo, J.M. Tamarit, E. Villa, GRASP and path-relinking for project scheduling under partially renewable resources, European Journal of Operational Research, 189 (2008) 1153-1170.
[20] M. Ranjbar, B. De Reyck, F. Kianfar, A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling, European Journal of Operational Research, 193 (2009) 35-48.
[21] M. Prais, C.C. Ribeiro, Reactive GRASP: an application to a matrix decomposition problem in TDMA traffic assignment, INFORMS Journal on Computing, 12 (2000) 164–176.
[22] J.L. Bresina, Heuristic-biased stochastic sampling, In: Proceedings of the Thirteenth National Conference on Artificial Intelligence. Portland, (1996) 271–278.
[23] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York (1976).

[24] E. Demeulemeester, M. Vanhoucke, W. Herroelen, A random generator for activity-on-the-node networks", Journal of Scheduling, 6 (2003) 13-34.
[image: image317.wmf]a

[image: image318.png]

	Table 1. Resource information of the example project

	Resource (r)
	
[image: image240.wmf]r

r

	
[image: image241.wmf]r

d

	
[image: image242.wmf]r

w

	
[image: image243.wmf]r

N

	1
	1
	18
	3
	{1,2,4,5}

	2
	4
	22
	4
	{3,4,5,6}

	Algorithm 1: Global algorithm structure

	1: ES=(
2: while TC not met do
3: Build DL using BDL
4: S=CPM(DL)

5:
[image: image244.wmf]LS(DL)

DL

=

6: if
[image: image245.wmf](

)

0

)

(

CPM

),

(

CPM

:

=

D

Î

$

i

i

DL

DL

ES

DL

 go to step 13.

7: else if
[image: image246.wmf]Elite

Max

ES

_

<

 then
[image: image247.wmf]DL

ES

ES

U

=

8: else

9: select
[image: image248.wmf]L

D

¢

randomly from ES using probability vector Q
10:
[image: image249.wmf](

)

L

D

DL

PR

DL

¢

=

,

11: if
[image: image250.wmf]DL

is better than the worst element
[image: image251.wmf]L

D

¢

¢

 in ES then
[image: image252.wmf](

)

DL

L

D

ES

ES

U

¢

¢

=

\

12: end else

13: end while
14: Return the best found solution

	Algorithm 2: Building direction list procedure

	1: Create CL and PM
2: Build PL based on priority rule pr

3: Select (from set (randomly using probability vector P
4: DL=(
5: Calculate the incremental penalty cost
[image: image253.wmf])

(

e

Z

for all
[image: image254.wmf]CL

e

Î

6: while CL((do
7:
[image: image255.wmf]{

}

CL

e

e

Z

Z

Î

=

|

)

(

min

min

8:
[image: image256.wmf]{

}

CL

e

e

Z

Z

Î

=

|

)

(

max

max

9:
[image: image257.wmf]{

}

)

(

)

(

|

min

max

min

Z

Z

Z

e

Z

CL

e

RCL

-

+

£

Î

=

a

10: Select an element e from the RCL randomly based on vector (
11: Insert e in corresponding position of DL
12: Update PM and CL
13: Recalculate the incremental penalty costs;

14: end while
15: Update vector P
16: Return DL

	Algorithm 3: Local search procedure

	1: Let
[image: image258.wmf]*

Z

be the objective function of input solution
[image: image259.wmf]*

S

 where
[image: image260.wmf](

)

*

*

CPM

G

=

S

2: for i=1 to
[image: image261.wmf]D

 do
3:
[image: image262.wmf])

(

i

i

e

inv

e

=

4: Update
[image: image263.wmf]*

G

5: if
[image: image264.wmf]*

G

is cyclic, then
[image: image265.wmf])

,

(

*

i

G

RP

.

6: if
[image: image266.wmf])

,

(

*

i

G

RP

is infeasible, then go to step 2.

7: else
[image: image267.wmf])

,

(

*

i

G

RP

G

=

8: S=CPM(G)

9: let Z as the objective function of graph G
10: if
[image: image268.wmf]*

Z

Z

<

, then (
[image: image269.wmf]Z

Z

=

*

 and
[image: image270.wmf]S

S

=

*

)

11: end for
12: Return
[image: image271.wmf]*

S

	Algorithm 4: Repairing procedure

	1: get
[image: image272.wmf]*

G

and i as inputs.

2: Let
[image: image273.wmf])

(

i

e

arc

C

C

U

=

3: if
[image: image274.wmf](

)

C

N

G

,

=

 is cyclic, then go to step 8

4: for j=1 to
[image: image275.wmf]D

 and
[image: image276.wmf]i

j

¹

 do
5:
[image: image277.wmf])

(

j

e

arc

C

C

U

=

6: if
[image: image278.wmf](

)

C

N

G

,

=

 is cyclic, then
[image: image279.wmf](

)

))

(

(

)

(

\

j

j

e

inv

arc

e

arc

C

C

U

=

7: end for
8: Return G

9: Return "infeasible".

	Algorithm 5: Path-relinking procedure

	1: get
[image: image280.wmf]DL

 and
[image: image281.wmf]L

D

¢

as inputs

2: let
[image: image282.wmf]DL

DL

in

=

,
[image: image283.wmf]L

D

DL

gu

¢

=

 and CS=(
3: Let
[image: image284.wmf]Æ

=

GS

4: Construct graphs
[image: image285.wmf]in

G

 and
[image: image286.wmf]gu

G

corresponding to
[image: image287.wmf]in

DL

 and
[image: image288.wmf]gu

DL

5: for i=1 to |D| do
6: if
[image: image289.wmf]gu

i

in

i

e

e

¹

, then

7:
[image: image290.wmf]gu

i

in

i

e

e

=

8: Update
[image: image291.wmf]in

G

9: if
[image: image292.wmf]in

G

is cyclic, then
[image: image293.wmf])

,

(

i

G

RP

G

in

in

=

10:
[image: image294.wmf]in

G

GS

GS

U

=

11: end if

12: end for
13: select randomly one member from GS such that its direction list is different from all

 members of ES and add it to CS.

14: Let
[image: image295.wmf]L

D

DL

in

¢

=

,
[image: image296.wmf]DL

DL

gu

=

, repeat the algorithm one more time from step 3.

15: Find better child solution and let
[image: image297.wmf]L

D

¢

¢

its corresponding direction list

16: Return
[image: image298.wmf]L

D

¢

¢

	Table 2. Priority rules 1 to 7

	Rule number
	[image: image300.wmf]ij

l

	Characteristics

	
	
	Precedence relations
	durations
	Resource requirements

	1
	
[image: image301.wmf])

(

)

(

j

suc

i

suc

U

	·
	
	

	2
	
[image: image302.wmf]j

i

d

d

+

	
	·
	

	3
	
[image: image303.wmf](

)

ij

r

rRR

q

Î

å

U

	
	
	·

	4
	
[image: image304.wmf]j

i

q

q

+

 QUOTE [image: image305.png]q: +4;

	·
	·
	

	5
	
[image: image306.wmf](

)

(

)

()()()(),

k

kij

r

kpredipredjsucisucjrR

RRR

q

ÎÎ

¹Æ

åå

UUU

IU

	·
	
	·

	6
	
[image: image307.wmf]ij

irjr

rRrR

dd

qq

ÎÎ

+

åå

	
	·
	·

	7
	
[image: image308.wmf](

)

(

)

()()()(),

ijk

kij

irjrkr

rRrRkpredipredjsucisucjrR

RRR

ddd

qqq

ÎÎÎÎ

¹Æ

++

åååå

UUU

IU

	·
	·
	·

	Table 3. Results of application of priority rules 1 to 7 on the example project

	Rule number
	
[image: image309.wmf]{

}

56

45

35

34

25

14

12

,

,

,

,

,

,

l

l

l

l

l

l

l

=

λ

	PL

	1
	{5,4,4,2,2,2,1}
	
[image: image310.wmf]{

}

6

,

5

,

5

,

4

,

5

,

3

,

4

,

3

,

5

,

2

,

4

,

1

,

2

,

1

	2
	{5,9,7,10,9,11,8}
	
[image: image311.wmf]{

}

2

,

1

,

5

,

2

,

6

,

5

,

5

,

3

,

4

,

1

,

4

,

3

,

5

,

4

	3
	{0.176,0.4,0.4,0.4,0.4,0.4,0.4}
	
[image: image312.wmf]{

}

2

,

1

,

6

,

5

,

5

,

4

,

5

,

3

,

4

,

3

,

5

,

2

,

4

,

1

	4
	{16,10,9,6,3,3,0}
	
[image: image313.wmf]{

}

6

,

5

,

5

,

4

,

5

,

3

,

4

,

3

,

5

,

2

,

4

,

1

,

2

,

1

	5
	{0.4,0.22,0.22,0.22,0.22,0.22,0.4}
	
[image: image314.wmf]{

}

5

,

4

,

5

,

3

,

4

,

3

,

5

,

2

,

4

,

1

,

6

,

5

,

2

,

1

	6
	{0.8,2.9,2.3,3.2,2.8,4.3,2.6}
	
[image: image315.wmf]{

}

2

,

1

,

5

,

2

,

6

,

5

,

5

,

3

,

4

,

1

,

4

,

3

,

5

,

4

	7
	{5.2,6.8,6.8,4.8,4.4,5.9,6.8}
	
[image: image316.wmf]{

}

5

,

3

,

4

,

3

,

2

,

1

,

5

,

4

,

6

,

5

,

5

,

2

,

4

,

1

	Table 4: APD for different priority rules and termination criteria

	TC
	

	10000
	1000
	100
	pr

	19.0
	30.3
	65.2
	1

	15.7
	27.3
	64.6
	2

	36.4
	58.6
	92.1
	3

	12.4
	25.4
	61.7
	4

	24.1
	41.8
	73.0
	5

	31.3
	53.3
	81.9
	6

	29.3
	45.1
	75.4
	7

	Table 5: APD for different values of (and termination criteria

	TC
	

	10000
	1000
	100
	(

	52.3
	61.6
	90.6
	0.00

	-
	-
	78.9
	0.35

	20.3
	38.7
	-
	0.40

	68.7
	79.5
	107.8
	1.00

	Table 6: APD for the algorithm without local search procedure

	TC
	

	10000
	1000
	100
	pr

	25.9
	40.1
	84.7
	1

	25.4
	36.8
	81.0
	2

	47.6
	63.8
	105.4
	3

	21.1
	35.3
	75.8
	4

	32.7
	48.5
	87.3
	5

	36.9
	55.5
	97.3
	6

	41.2
	52.9
	92.6
	7

	Table 7: APD for the algorithm without path-relinking procedure

	TC
	

	10000
	1000
	100
	pr

	22.2
	31.9
	69.3
	1

	20.2
	28.8
	68.3
	2

	39.6
	59.5
	95.4
	3

	18.3
	28.0
	62.5
	4

	28.9
	43.5
	76.7
	5

	33.9
	54.7
	84.6
	6

	33.4
	47.7
	79.5
	7

� EMBED Equation.3 ���

� The order strength is the number of comparable intermediate activity pairs divided by the maximum number n(n-1)=2 of such pairs, and is a measure for the closeness to a linear order of the technological precedence constraints in C (cfr. Mastor, 1970).

� The resource factor shows how many numbers of resources are used in average by each of the activities.

26

[image: image319.png]Frequency
an
m
an
s
m

B
m
1w

I e
0005 01 01503 035 03 035 08 043 0 035 06 085 07 075 08 085 09 095 1

Figure 2: Frequency of different values of &

[image: image320.wmf]a

_1343564353.unknown

_1345991265.unknown

_1345993641.unknown

_1345996861.unknown

_1345998140.unknown

_1357570875.unknown

_1371739548.unknown

_1371743051.unknown

_1371743052.unknown

_1371743049.unknown

_1371743050.unknown

_1371739549.unknown

_1357570990.unknown

_1357571865.unknown

_1357570984.unknown

_1345998244.unknown

_1345998335.unknown

_1345998150.unknown

_1345997768.unknown

_1345997810.unknown

_1345997260.unknown

_1345996404.unknown

_1345996684.unknown

_1345996738.unknown

_1345996425.unknown

_1345995128.unknown

_1345995148.unknown

_1345993712.unknown

_1345992244.unknown

_1345993105.unknown

_1345993205.unknown

_1345993273.unknown

_1345993118.unknown

_1345992269.unknown

_1345993046.unknown

_1345992254.unknown

_1345991887.unknown

_1345992173.unknown

_1345992220.unknown

_1345992138.unknown

_1345991520.unknown

_1345991569.unknown

_1345991504.unknown

_1344064488.unknown

_1344153487.unknown

_1344326785.unknown

_1344671468.unknown

_1345990787.unknown

_1345990863.unknown

_1345990613.unknown

_1345987788.unknown

_1344671466.unknown

_1344671467.unknown

_1344671464.unknown

_1344671465.unknown

_1344671462.unknown

_1344671463.unknown

_1344327683.unknown

_1344159516.unknown

_1344324159.unknown

_1344324222.unknown

_1344324256.unknown

_1344324298.unknown

_1344324635.unknown

_1344324637.unknown

_1344326774.unknown

_1344324636.unknown

_1344324355.unknown

_1344324389.unknown

_1344324634.unknown

_1344324498.unknown

_1344324364.unknown

_1344324384.unknown

_1344324304.unknown

_1344324311.unknown

_1344324323.unknown

_1344324307.unknown

_1344324301.unknown

_1344324284.unknown

_1344324291.unknown

_1344324293.unknown

_1344324287.unknown

_1344324263.unknown

_1344324266.unknown

_1344324259.unknown

_1344324239.unknown

_1344324245.unknown

_1344324248.unknown

_1344324242.unknown

_1344324229.unknown

_1344324232.unknown

_1344324227.unknown

_1344324192.unknown

_1344324206.unknown

_1344324216.unknown

_1344324218.unknown

_1344324213.unknown

_1344324199.unknown

_1344324202.unknown

_1344324196.unknown

_1344324178.unknown

_1344324184.unknown

_1344324188.unknown

_1344324181.unknown

_1344324167.unknown

_1344324169.unknown

_1344324164.unknown

_1344324099.unknown

_1344324122.unknown

_1344324142.unknown

_1344324156.unknown

_1344324139.unknown

_1344324126.unknown

_1344324115.unknown

_1344324119.unknown

_1344324112.unknown

_1344160805.unknown

_1344160971.unknown

_1344324053.unknown

_1344160936.unknown

_1344160243.unknown

_1344160767.unknown

_1344160793.unknown

_1344160115.unknown

_1344160147.unknown

_1344159546.unknown

_1344156244.unknown

_1344158065.unknown

_1344158071.unknown

_1344158528.unknown

_1344158045.unknown

_1344158054.unknown

_1344157596.unknown

_1344157587.unknown

_1344155363.unknown

_1344155576.unknown

_1344155634.unknown

_1344156187.unknown

_1344156211.unknown

_1344155596.unknown

_1344155402.unknown

_1344154687.unknown

_1344155296.unknown

_1344155344.unknown

_1344155286.unknown

_1344153897.unknown

_1344153928.unknown

_1344070672.unknown

_1344073865.unknown

_1344082457.unknown

_1344084336.unknown

_1344084457.unknown

_1344151793.unknown

_1344151899.unknown

_1344084359.unknown

_1344083735.unknown

_1344084111.unknown

_1344082662.unknown

_1344074217.unknown

_1344074290.unknown

_1344081663.unknown

_1344074157.unknown

_1344071602.unknown

_1344072493.unknown

_1344072748.unknown

_1344072332.unknown

_1344072346.unknown

_1344071588.unknown

_1344070441.unknown

_1344070589.unknown

_1344070633.unknown

_1344070480.unknown

_1344070512.unknown

_1344069184.unknown

_1344070317.unknown

_1344069037.unknown

_1343810818.unknown

_1343985385.unknown

_1343992943.unknown

_1343996360.unknown

_1343998619.unknown

_1343994706.unknown

_1343991853.unknown

_1343992009.unknown

_1343989638.unknown

_1343985132.unknown

_1343985150.unknown

_1343819841.unknown

_1343984870.unknown

_1343824172.unknown

_1343819305.unknown

_1343819802.unknown

_1343818994.unknown

_1343564813.unknown

_1343567417.unknown

_1343568024.unknown

_1343568050.unknown

_1343568087.unknown

_1343568157.unknown

_1343568069.unknown

_1343568036.unknown

_1343567699.unknown

_1343567755.unknown

_1343567687.unknown

_1343567649.unknown

_1343567662.unknown

_1343566839.unknown

_1343567395.unknown

_1343567406.unknown

_1343566904.unknown

_1343566554.unknown

_1343566799.unknown

_1343566725.unknown

_1343565169.unknown

_1343564724.unknown

_1343564764.unknown

_1343564791.unknown

_1343564799.unknown

_1343564752.unknown

_1343564391.unknown

_1343564574.unknown

_1343564375.unknown

_1343563659.unknown

_1343563869.unknown

_1343564121.unknown

_1343564175.unknown

_1343564343.unknown

_1343564141.unknown

_1343564014.unknown

_1343564051.unknown

_1343563978.unknown

_1343563754.unknown

_1343563809.unknown

_1343563850.unknown

_1343563771.unknown

_1343563729.unknown

_1343563740.unknown

_1343563669.unknown

_1343563397.unknown

_1343563490.unknown

_1343563593.unknown

_1343563652.unknown

_1343563534.unknown

_1343563440.unknown

_1343563457.unknown

_1343563419.unknown

_1343563160.unknown

_1343563383.unknown

_1343563384.unknown

_1343563169.unknown

_1343563382.unknown

_1343562841.unknown

_1343563095.unknown

_1343563147.unknown

_1343563081.unknown

_1343562822.unknown

