Showing 2 results for Transformer.
M. Bigdeli,
Volume 18, Issue 1 (3-2022)
Abstract
Moisture in the transformer insulation can shorten its life. There are many methods for detecting humidity in transformer paper insulation. One of the methods used in the factory to evaluate the drying process of transformer insulation and determine its humidity is the frequency response analysis method. In this paper, the desired experiments are performed on different transformers, and after obtaining the results of frequency response measurements, the required features are extracted from them. Then, using the k-means method, these features are placed in three clusters (dry, wet, and excessively wet). The cost function of the k-means method is optimized using the particle swarm optimization (PSO) algorithm to get a better result. By applying new data from different transformers, the capability of the proposed method in determining the moisture content of the transformer is evaluated. The results obtained from the evaluation of the insulation condition of another group of transformers indicate the high accuracy of the proposed method.
Akanksha Jain, S.c. Gupta,
Volume 20, Issue 3 (9-2024)
Abstract
Due to the anticipated increase in loads, the power grid will encounter the issue of system peak loads in the future, which is typically addressed through grid reinforcement. However, implementing a flexibility service option can prevent the need for grid development. As the overall load continues to rise, the distribution transformer becomes overloaded. The presented work focuses on enhancing one of the parameters that define the insulation life of the transformer, known as the Loss-of-Life (LOL). Transactive approach involves the rescheduling of the battery and photovoltaic generation. Dominated Group Search Optimization (DGSO) algorithm is utilized to optimize the objective function of reducing the peak transformer load under the power flow and voltage constraints of the network. Experimental validation of the proposed method is conducted using MATLAB 2018 software. Modified IEEE 34-bus system is used to implement the proposed methodology. Numerical results obtained from various cases elucidate that the proposed model reduces the LOL of the transformer from 0.0103 to 0.0017 p.u.Comparative analysis of the proposed method with the already used methods of voltage-control and Volt-Var control have been presented.