Showing 5 results for Aging
Sayed Mahmoud Sakhaei, A.mahlooji Far, Hassan Ghassemian,
Volume 2, Issue 2 (4-2006)
Abstract
Contrast resolution and detail resolution are two important parameters in
ultrasound imaging. This paper presents a new method to enhance these parameters,
simultaneously. A parallel auxiliary beamformer has been employed whose weightings are
such that an estimation of the leaked signal through the main beamformer is obtained. Then
the output of main beamformer is modified according to the estimated leaked signal. The
efficiency of our adaptive method is demonstrated by applying it over an experimental data
set and provided an enhancement of about 22 percent in lateral resolution and 15-20 dB in
contrast resolution. This method also has the advantages of simplicity and possibility of real
time implementation.
S. M. Zabihi, H. Ghanei-Yakhdan, N. Mehrshad,
Volume 16, Issue 4 (12-2020)
Abstract
In order to enhance the accuracy of the motion vector (MV) estimation and also reduce the error propagation issue during the estimation, in this paper, a new adaptive error concealment (EC) approach is proposed based on the information extracted from the video scene. In this regard, the motion information of the video scene around the degraded MB is first analyzed to estimate the motion type of the degraded MB. If the neighboring MBs possess uniform motion, the degraded MB imitates the behavior of neighboring MBs by choosing the MV of the collocated MB. Otherwise, the lost MV is estimated through the second proposed EC technique (i.e., IOBMA). In the IOBMA, unlike the conventional boundary matching criterion-based EC techniques, not only each boundary distortion is evaluated regarding both the luminance and the chrominance components of the boundary pixels, but also the total boundary distortion corresponding to each candidate MV is calculated as the weighted average of the available boundary distortions. Compared with the state-of-the-art EC techniques, the simulation results indicate the superiority of the proposed EC approach in terms of both the objective and subjective quality assessments.
Y. McHaouar, A. Abouloifa, I. Lachkar, H. Katir, F. Giri, A. El Aroudi, A. Elallali, C. Taghzaoui,
Volume 18, Issue 1 (3-2022)
Abstract
In this paper, the problem of controlling PWM single-phase AC/DC converters is addressed. The control objectives are twofold: (i) regulating the output voltage to a selected reference value, and (ii) ensuring a unitary power factor by forcing the grid current to be in phase with the grid voltage. To achieve these objectives, the singular perturbation technique is used to prove that the power factor correction can be done in the open-loop system with respect to certain conditions that are not likely to take place in reality. It is also applied to fulfill the control objectives in the closed-loop through a cascade nonlinear controller based on the three-time scale singular perturbation theory. Additionally, this study develops a rigorous and complete formal stability analysis, based on multi-time-scale singular perturbation and averaging theory, to examine the performance of the proposed controller. The theoretical results have been validated by numerical simulation in MATLAB/Simulink/SimPowerSystems environment.
Hassan Alizadeh Shyrayeh, Iraj Ahmadi, Mohammad Mirzaie, Masoud Ahmadi Gorji,
Volume 18, Issue 4 (12-2022)
Abstract
The progressive application of non-linear loads in distribution systems (DS) increases current harmonics flow in DS's apparatuses, especially distribution transformers (DTs). Since DTs' operating temperature rises due to the harmonics flow, their loading should be reduced such that the hot spot temperature (HST) is preserved under its permissible value. This means that DTs' available capacity is influenced by load harmonic content. In this paper, a novel formulation for DTs' failure rate in the presence of harmonics is presented as a function of load harmonic contents. Using the suggested equivalent failure rate, DTs' available capacity in harmonic polluted DS is mathematically formulated. Additionally, the presence of the harmonic increases the HST, leading to DTs' aging acceleration. Therefore, the impact of harmonic components on DTs' aging is arithmetically modeled. To evaluate the efficacy of the suggested reliability model, it is applied to three distinct DTs having respectively industrial, commercial, and residential loads. The obtained results indicate that the available capacity of DTs with the same rated capacity would be different regarding to their load harmonic contents. On the other hand, it is comprehended from the achieved results that the aging acceleration factor (Faa) of the DTs increases owing to their load harmonic contents.
E. Y. Burkin, F. A. Gubarev, V. V. Sviridov, D. V. Shiyanov,
Volume 19, Issue 3 (9-2023)
Abstract
A two-channel pulsed power supply for an imaging system with brightness amplification and independent synchronous laser illumination is designed. The power supply generates synchronized high-voltage pulses with a frequency of 16–24 kHz, an average electrical power of up to 1.2 kW, and an adjustable amplitude of up to 6.2 kV to pump copper bromide gas discharge tubes with independent control of the temperature parameters of the active medium. To generate pumping pulses for laser media, we used a two-channel thyratron circuit with a common source of stabilized voltage provided by a step-down pulse stabilizer and a bridge inverter-based circuit for the pulsed charge of storage capacitors. The voltage equalization on the storage capacitors is carried out by means of magnetic coupling of the charging inductances wound on a common core. Adjustable delay lines based on variable inductances provide synchronous operation of two brightness amplifiers with a synchronization accuracy of lasing pulses of ±1 ns. The power supply demonstrated stable operation with two gas discharge tubes having different characteristics, including those with different types of electrodes. It has been integrated into a laboratory facility for the study of high-energy materials combustion.