Search published articles


Showing 2 results for Word Length

A. Hamidi, A. Ahmadi, S. Karimi,
Volume 14, Issue 1 (3-2018)
Abstract

In AC-DC power conversion, active front end rectifiers offer several advantages over diode rectifiers such as bidirectional power flow capability, sinusoidal input currents and controllable power factor. A digital finite control set model predictive controller based on fixed-point computations of an active front end rectifier with unity displacement of input voltage and current to improve dynamic response has been presented in this paper. Here by using a predictive cost function and fixed-point computations, the optimal switching state to be applied in the next sampling is selected. The low-cost architecture is implemented on a FPGA platform. Designed architecture is constructed based on fixed-point arithmetic with minimal functional units. The control algorithm, which is used in this architecture, is Finite-Set Model Predictive Control (FS-MPC). Compared with other controllers, this controller provides a much better dynamic performance. Finally, in order to evaluate the accuracy of the fixed-point computations several cases for various loading conditions and word lengths are verified.

A. Hamidi, S. Karimi, A. Ahmadi,
Volume 19, Issue 2 (6-2023)
Abstract

One of the problems in digital control of power converters is calculation time in each sampling instant which effect on cost and complexity of digital controller. In this paper, a formula is introduced for calculating the number of clock cycles in each sample then interaction between sampling frequency and implementation cost (number of functional units and word length) of FPGA-based digital controller of DC-AC converter (three-phase four-legs inverter) is verified. The digital architecture is built on finite set model predictive control, and implemented on the FPGA board based on fixed-point calculations. We consider two digital architectures for design the controller in this study. One with four functional units and another with six functional units. This study aims to develop a mathematical equation for the number of clock cycles in each time instant to select the best switching state in the control algorithm, which affects the sampling frequency and clock frequency. Based on the obtained results, the number of functional units, word-length, and the number of switches determine the maximum clock cycles. By knowing maximum clock cycles the maximum sampling frequency is determined. In structure with four functional units, the maximum sampling frequency is 71 kHz for WL=8 bits and 17.7 kHz for WL=32 bits, and in structure, with six functional units, the maximum sampling frequencies are 97.6 and 24.4 kHz for WL=8 and WL=32 bits, respectively. In architecture with more functional units, we have greater sampling frequency with more accuracy and cost. The results obtained from this paper can be a reference for digital controller design. 


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.