M. R. Homaeinezhad, A. Ghaffari, H. Najjaran Toosi, M. Tahmasebi, M. M. Daevaeiha,
Volume 7, Issue 1 (3-2011)
Abstract
In this study, a new long-duration holter electrocardiogram (ECG) major events detection-delineation algorithm is described which operates based on the false-alarm error bounded segmentation of a decision statistic with simple mathematical origin. To meet this end, first three-lead holter data is pre-processed by implementation of an appropriate bandpass finite-duration impulse response (FIR) filter and also by calculation of the Euclidean norm between corresponding samples of three leads. Then, a trous discrete wavelet transform (DWT) is applied to the resulted norm and an unscented synthetic measure is calculated between some obtained dyadic scales to magnify the effects of low-power waves such as P or T-waves during occurrence of arrhythmia(s). Afterwards, a uniform length window is slid sample to sample on the synthetic scale and in each slid, six features namely as summation of the nonlinearly amplified Hilbert transform, summation of absolute first order differentiation, summation of absolute second order differentiation, curve length, area and variance of the excerpted segment are calculated. Then all feature trends are normalized and superimposed to yield the newly defined multiple-order derivative wavelet based measure (MDWM) for the detection and delineation of ECG events. In the next step, a α-level Neyman-Pearson classifier (which is a false-alarm probability-FAP controlled tester) is implemented to detect and delineate QRS complexes. To show advantages of the presented method, it is applied to MIT-BIH Arrhythmia Database, QT Database, and T-Wave Alternans Database and as a result, the average values of sensitivity and positive predictivity Se = 99.96% and P+ = 99.96% are obtained for the detection of QRS complexes, with the average maximum delineation error of 5.7 msec, 3.8 msec and 6.1 msec for P-wave, QRS complex and T-wave, respectively showing marginal improvement of detection-delineation performance. In the next step, the proposed method is applied to DAY hospital high resolution holter data (more than 1,500,000 beats including Bundle Branch Blocks-BBB, Premature Ventricular Complex-PVC and Premature Atrial Complex-PAC) and average values of Se=99.98% and P+=99.97% are obtained for QRS detection. In summary, marginal performance improvement of ECG events detection-delineation process in a widespread values of signal to noise ratio (SNR), reliable robustness against strong noise, artifacts and probable severe arrhythmia(s) of high resolution holter data and the processing speed 163,000 samples/sec can be mentioned as important merits and capabilities of the proposed algorithm.
S. A. R. Seyedin, A. Shahpari,
Volume 11, Issue 2 (6-2015)
Abstract
In this paper, five conditions that have been proposed by Cobb and Shenoy are studied for nine different mappings from the Dempster-Shafer theory to the probability theory. After comparing these mappings, one of the considerable results indicates that none of the mappings satisfies the condition of invariance with respect to the marginalization process. In more details, the main reason for this defect is that the classic projection process in DST loses some probabilistic information. Therefore, as regards this subject, a solution is presented for solving this problem for two mappings: the pignistic probability and the normalized plausibility transformation.

Nerjes Rahemi, Kurosh Zarrinnegar, Mohammad Reza Mosavi,
Volume 21, Issue 3 (8-2025)
Abstract
In determining position using GPS, due to local effects, pseudo-range errors cannot be mitigated by methods such as the use of reference stations or mathematical models; however, by using precise carrier phase observations and deploying a statistically optimal filter such as Phase-Adjusted Pseudo-range (PAPR) algorithm, the error can be significantly reduced. Additionally, the correlation between observations is a factor affecting positioning accuracy. In this paper, by using both pseudo-range and carrier phase observations and taking into account the effect of spatial correlation between observations to determine the variance-covariance matrix, the accuracy of position determination using the recursive Least Squares method is increased. For this purpose, the PAPR algorithm was implemented to reduce error. Next, a non-diagonal variance-covariance matrix was introduced to estimate the variance of the observations based on their spatial correlations. Experimental results on real data show that the proposed method improves positioning accuracy by at least 10% compared to previous methods. To evaluate the complexity of the proposed models, we employed an ARM STM32H743 processor. The findings indicate a modest increase in the proposed model complexity compared to earlier models, along with a substantial improvement in positioning accuracy.