Search published articles


Showing 10 results for Space Vector

S. Thangaprakash, A. Krishnan,
Volume 6, Issue 2 (6-2010)
Abstract

New control circuits and algorithms are frequently proposed to control the impedance (Z) source inverter in efficient way with added benefits. As a result, several modified control techniques have been proposed in recent years. Although these techniques are clearly superior to the simple boost control method which was initially proposed along with the Z-source inverter (ZSI), little or conflicting data is available about their merits relating to each other. In this paper, it is shown how the shoot-through periods are inserted in the switching waveforms of the power switches and the performances of them are analyzed based on the operation of ZSI. Simple boost control, maximum boost control, constant boost control and space vector modulation based control methods given in the literature has been illustrated with their control characteristics. A critical investigation on ripples of the impedance source elements, output voltage controllability, output harmonic profile, transient response of the voltage across the impedance source capacitor and voltage stress ratio etc has been presented with the simulation results. The simulation results are experimentally verified in the laboratory with digital signal processors (DSP). DSP coding for the above all control techniques has been generated by interfacing Matlab/Simulink with DSP C6000 tool box and signal processing block set.
S. M. Dehghan, M. Mohamadian, A. Yazdian, A. H. Rajaei, Mr H. Zahedi,
Volume 6, Issue 4 (12-2010)
Abstract

This paper presents a modified nine switch inverter with two inputs and two Z-source networks. This inverter has two DC inputs and two AC outputs. Input DC voltages can be boosted to the required level. Amplitude, frequency and phase of AC output voltages can be controlled, independently. The proposed converter can be used in applications with two unregulated DC sources, which require feeding two independent loads. Compared to the conventional structure, the proposed converter requires reduced number of semiconductor switches hence improved converter reliability and less volume. Performance of the proposed inverter is verified by experimental results.
D. Arab Khaburi, H. Rostami,
Volume 7, Issue 1 (3-2011)
Abstract

This paper presents a method to control both the dc boost and the ac output voltage of Z-source inverter using neural network controllers. The capacitor voltage of Z-source network has been controlled linearly in order to improve the transient response of the dc boost control of the Z-source inverter. The peak value of the line to line ac output voltage is used to control and keep the ac output at its desired value. A modified space vector pulse-width-modulation method is also applied to control the shoot-through duty ratio for boosting dc voltage. This modified method lets the dc voltage stress across the inverter switches be minimized. The neural network control technique is verified by simulation results. The results are compared with that of the traditional PI controller.
D. Arab Khaburi,
Volume 8, Issue 2 (6-2012)
Abstract

This paper presents a comparative study on the Predictive Direct Torque Control method and the Indirect Space Vector Modulation Direct Torque Control method for a Doubly-Fed Induction Machine (DFIM) which its rotor is fed by an Indirect Matrix Converter (IMC). In Conventional DTC technique, good transient and steady-state performances are achieved but it presents a non constant switching frequency behavior and non desirable torque ripples. However, in this paper by using the proposed methods, a fixed switching frequency is obtained. In this model Doubly-Fed Induction Machine is connected to the grid by the stator and the rotor is fed by an Indirect Matrix Converter. Functionally this converter is very similar to the Direct Matrix Converter, but it has separate line and load bridges. In the inverter stage, the Predictive method and ISVM method are employed. In the rectifier stage, in order to reduce losses caused by snubber circuits, the rectifier fourstep commutation method is employed. A comparative study between the Predictive DTC and ISVM-DTC is performed by simulating these control systems in MATLAB/SIMULINK software environments and the obtained results are presented and verified.
M. Alizadeh Moghadam, R. Noroozian, S. Jalilzadeh,
Volume 11, Issue 3 (9-2015)
Abstract

This paper presents modeling, simulation and control of matrix converter (MC) for variable speed wind turbine (VSWT) system including permanent magnet synchronous generator (PMSG). At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independent control maximum power point tracking (MPPT) of generator side and regulate reactive power of grid side for the operation of the VSWT system. The MPPT is implemented by a new control system. This control system is based on control of zero d-axis current (ZDC). The ZDC control can be realized by transfer the three-phase stator current in the stationary reference frame into d-and q-axis components in the synchronous reference frame. Also this paper is presented, a novel control strategy to regulate the reactive power supplied by a variable speed wind energy conversion system. This control strategy is based on voltage oriented control (VOC). The simulation results based on Simulink/Matlab software show that the controllers can extract maximum power and regulate reactive power under varying wind velocities.

AWT IMAGE


H. Benbouhenni, Z. Boudjema, A. Belaidi,
Volume 14, Issue 4 (12-2018)
Abstract

This paper applied second order sliding mode control (SOSMC) strategy using artificial neural network (ANN) on the rotor side converter of a 1.5 MW doubly fed induction generator (DFIG) integrated in a wind turbine system. In this work, the converter is controlled by a neural space vector modulation (NSVM) technique in order to reduce powers ripples and total harmonic distortion (THD) of stator current. The validity of the proposed control technique applied on the DFIG is verified by Matlab/Simulink. The active power, reactive power, torque and stator current are determined and compared with conventional control method. Simulation results presented in this paper shown that the proposed control scheme reduces the THD value and powers ripples compared to traditional control under various operating conditions.

E. Bounadja, Z. Boudjema, A. Djahbar,
Volume 15, Issue 3 (9-2019)
Abstract

This paper proposes a novel wind energy conversion system based on a Five-phase Permanent Magnetic Synchronous Generator (5-PMSG) and a Five to three Matrix Converter (5-3MC). The low cost and volume and also eliminating grid side converter controller are attractive aspects of the proposed topology compared to the conventional with back-to-back converters. The control of active and reactive power injected to the grid from the proposed system is carried out by a Direct Power Control (DPC) combined with a Space Vector Modulation (SVM). An advantage of this control, compared with the Conventional Direct Power Control (C-DPC) method, is that it eliminates the lookup table and lowers grid powers and currents harmonics through the use of a standard PI controller instead of hysteresis comparators. The efficiency of proposed whole system has been simulated by using MATLAB/Simulink environment.

Z. Boudjema, H. Benbouhenni, A. Bouhani, F Chabni,
Volume 17, Issue 3 (9-2021)
Abstract

This article presents the implementation of an improved space vector pulse width modulation  (SVPWM) technique based on neural network for a real two level voltage source inverter (VSI) realized in our Lab. The major goal of using this new technique is the amelioration of the voltage quality in the output of the VSI by decreasing the effect of the harmonics. The used technique has been simulated by MATLAB/Simulink and then implemented using a DSPACE card on a real two level VSI. The advantages of the used technique are shown by simulation and experiment results.

H. Benbouhenni, N. Bizon, I. Colak,
Volume 18, Issue 3 (9-2022)
Abstract

The space vector modulation (SVM) method was recently proposed and captured the interest of scientific research in the following years. In this paper, besides a brief review of the SVM methods proposed in the literature, a new SVM strategy based on the calculation of the minimum (Min) and maximum (Max) of three-phase voltages is proposed. The proposed SVM technique does not have to calculate the sector and angle, as is done in the traditional SVM technique. Therefore, it is the easiest technique to accomplish compared to the traditional SVM method and other existing methods. Compared with the traditional pulse width modulation (PWM), the advantage of using this new SVM strategy is that the scheme is simple and the total harmonic distortion (THD) value in the output of the two-level inverter is minimized. The technology has been simulated by MATLAB/Simulink, and then implemented on a real traditional two-level inverter using the dSPACE card. It is worth reporting the reduction obtained for THD using the proposed SVM technique (where THD is about 70%) compared to the traditional PWM technique (where THD is about 79.5%).

Azzedine Khati,
Volume 20, Issue 3 (9-2024)
Abstract

In this research paper, a multivariable prediction control method based on direct vector control is applied to command the active power and reactive power of a doubly-fed induction generator used into a wind turbine system. To obtain high energy performance, the space vector modulation inverter based on fuzzy logic technique (fuzzy space vector modulation) is used to reduce stator currents harmonics and active power and reactive power ripples. Also the direct vector control model of the doubly-fed induction generator is required to ensure a decoupled control. Then its classic proportional integral regulators are replaced by the multivariable prediction controller in order to adjust the active and reactive power. So, in this work, we implement a new method of control for the doubly-fed induction generator energy. This method is carried out for the first time by combining the MPC strategy with artificial intelligence represented by Fuzzy SVM-based converter in order to overcome the drawbacks of other controllers used in renewable energies. The given simulation results using Matlab software show a good performance of the used strategy, particularly with regard to the quality of the energy supplied.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.