Showing 4 results for Reinforcement Learning
H. Bakhshandeh, A. Akbari Foroud,
Volume 12, Issue 1 (3-2016)
Abstract
This paper addresses the possibility of capacity withholding by energy producers, who seek to increase the market price and their own profits. The energy market is simulated as an iterative game, where each state game corresponds to an hourly energy auction with uniform pricing mechanism. The producers are modeled as agents that interact with their environment through reinforcement learning (RL) algorithm. Each producer submits step-wise offer curves, which include the quantity-price pairs, to independent system operator (ISO) under incomplete information. An experimental change is employed in the producer's profit maximization model that causes the iterative algorithm converge to a withholding bidding value. The producer can withhold the energy of his own generating unit in a continuous range of its available capacity. The RL relation is developed to prevent from becoming invalid in certain situations. The results on a small test system demonstrate the emergence of the capacity withholding by the producers and its effect on the market price.
H. Shayeghi, A. Younesi,
Volume 13, Issue 4 (12-2017)
Abstract
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO) algorithm and are fixed. The second one is a reinforcement learning (RL) based supplementary controller that has a flexible structure and improves the output of the first stage adaptively based on the system dynamical behavior. Due to the use of RL paradigm integrated with PID controller in this strategy, it is called RL-PID controller. The primary motivation for the integration of RL technique with PID controller is to make the existing local controllers in the industry compatible to reduce the control efforts and system costs. This novel control strategy combines the advantages of the PID controller with adaptive behavior of MA to achieve the desired level of robust performance under different kind of uncertainties caused by stochastically power generation of DERs, plant operational condition changes, and physical nonlinearities of the system. The suggested decentralized controller is composed of the autonomous intelligent agents, who learn the optimal control policy from interaction with the system. These agents update their knowledge about the system dynamics continuously to achieve a good frequency oscillation damping under various severe disturbances without any knowledge of them. It leads to an adaptive control structure to solve LFC problem in the multi-source power system with stochastic DERs. The results of RL-PID controller in comparison to the traditional PID and fuzzy-PID controllers is verified in a multi-area power system integrated with DERs through some performance indices.
Reza Bayat Rizi, Amir R. Forouzan, Farshad Miramirkhani, Mohamad F. Sabahi,
Volume 20, Issue 4 (11-2024)
Abstract
Visible Light Communication, a key optical wireless technology, offers reliable, high-bandwidth, and secure communication, making it a promising soloution for a variety of applications. Despite its many advantages, optical wireless communication faces challenges in medical environments due to fluctuating signal strength caused by patient movement. Smart transmitter structures can improve system performance by adjusting system parameters to the fluctuating channel conditions. The purpose of this research is to examine how adaptive modulation performs in a medical body sensor network system that uses visible light communication. The analysis focuses on various medical situations and investigates machine learning algorithms. The study compares adaptive modulation based on supervised learning with that based on reinforcement learning. The findings indicate that both approaches greatly improve spectral efficiency, emphasizing the significance of implementing link adaptation in visible light communication-based medical body sensor networks. The use of the Q-learning algorithm in adaptive modulation enables real-time training and enables the system to adjust to the changing environment without any prior knowledge about the environment. A remarkable improvement is observed for photodetectors on the shoulder and wrist since they experience more DC gain.
Mousa Abdollahvand, Sima Sobhi-Givi,
Volume 21, Issue 1 (3-2025)
Abstract
This paper introduces a new method for improving wireless communication systems by employing beyond diagonal reconfigurable intelligent surfaces (BD-RIS) and unmanned aerial vehicle (UAV) alongside deep reinforcement learning (DRL) techniques. BD-RIS represents a departure from traditional RIS designs, providing advanced capabilities for manipulating electromagnetic waves to optimize the performance of communication. We propose a DRL-based framework for optimizing the UAV and configuration of BD-RIS elements, including hybrid beamforming, phase shift adjustments, and transmit power coefficients for non-orthogonal multiple access (NOMA) transmission by considering max-min fairness. Through extensive simulations and performance evaluations, we demonstrate that BD-RIS outperforms conventional RIS architectures. Additionally, we analyze the convergence speed and performance trade-offs of different DRL algorithms, emphasizing the importance of selecting the appropriate algorithm and hyper-parameters for specific applications. Our findings underscore the transformative potential of BD-RIS and DRL in enhancing wireless communication systems, laying the groundwork for next-generation network optimization and deployment.