Search published articles

Showing 2 results for Imperialist Competitive Algorithm (ica)

S. Najafi Ravadanegh,
Volume 10, Issue 1 (3-2014)

Optimal distribution substation placement is one of the major components of optimal distribution system planning projects. In this paper optimal substation placement problem is solved using Imperialist Competitive Algorithm (ICA) as a new developed heuristic optimization algorithm. This procedure gives the optimal size, site and installation time of medium voltage substation, using their related costs subject to operating and optimization constraints. A multistage and pseudo-dynamic expansion planning is applied to consider dynamic of the system parameters for example, load forecasting uncertainty, asset management and geographical constraints. In order to evaluate the effectiveness of the proposed method a sensitivity analysis of ICA parameters on obtained results is done. A graphical representation of obtained results is used to show the efficiency and capability of the proposed method both from the planning view and graphical aspects. The results show the efficiency and capability of the proposed method which has been tested on a real size distribution network.
Z. Rafiee, M. Rafiee, M. R. Aghamohammadi,
Volume 16, Issue 3 (9-2020)

Improving transient voltage stability is one of the most important issues that must be provided by doubly fed induction generator (DFIG)-based wind farms (WFs) according to the grid code requirement. This paper proposes adjusted DC-link chopper based passive voltage compensator and modified transient voltage controller (MTVC) based active voltage compensator for improving transient voltage stability. MTVC is a controller-based approach, in which by following a voltage dip (VD) condition, the voltage stability for the WF can be improved. In this approach, a voltage dip index (VDI) is proposed to activate/deactivate the control strategy, in which, two threshold values are used. In the active mode, the active and reactive power are changed to decrease the rotor current and boost the PCC voltage, respectively. Based on the control strategy, in a faulty grid, DFIG not only will be able to smooth DC-link voltage fluctuations and reduces rotor overcurrents but also it will increase the voltage of point of common coupling (PCC). Therefore, it improves transient voltage stability. The simulation results show the effectiveness of the proposed strategy for improving voltage stability in the DFIG.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.