Search published articles


Showing 2 results for High Voltage Gain

J. Fallah Ardashir, M. Sabahi, S. H. Hosseini, E. Babaei, G. B. Gharehpetian,
Volume 13, Issue 2 (6-2017)
Abstract

This paper proposes a new single phase transformerless Photovoltaic (PV) inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC) technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.


Saeed Hasanzadeh, Seyed Mohsen Salehi, Mohammad Javad Saadatmandfar,
Volume 20, Issue 3 (9-2024)
Abstract

Various forms of distributed generation (DG), such as photovoltaic (PV) systems, play a crucial role in advancing a more sustainable future, driven by economic factors and environmental policies implemented by governments. DC-DC converters are essential for harnessing power from solar cells, as they maintain a constant output voltage despite fluctuations in input voltage. Typically, step-up converters are employed to raise output voltage levels, though they often apply the same voltage to an active switch as the output voltage, which can be limiting. To effectively integrate distributed generation sources with the utility grid, high-voltage gain step-up converters are necessary since these sources typically operate at low voltage levels. This study presents an enhanced design of non-isolated DC-DC converters with high voltage gain tailored for photovoltaic (PV) applications. The proposed architecture achieves a quadratic increase in output voltage gain, which alleviates voltage stress on the active switch. Our converter design features a quadratic boost converter complemented by a voltage-boosting cell, facilitating significant voltage amplification. This topology benefits from employing an active switch while minimizing the number of inductors required, resulting in a more compact circuit design. Furthermore, the proposed architecture shares characteristics with recently published topologies regarding passive component utilization, voltage gain, and other relevant parameters. To validate our findings, we conducted mathematical analyses and simulations, with results corroborated by experimental data from laboratory prototype tests.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.