Search published articles


Showing 2 results for Gnss

M. Mousavi Moaiied, M. R. Mosavi,
Volume 12, Issue 1 (3-2016)
Abstract

In this paper, combined GPS and GLONASS positioning systems are discussed and some solutions have been proposed to improve the accuracy of navigation. Global Satellite Navigation System (GNSS) is able to provide position, velocity and time with respect to coordinated universal time. GNSS positioning is based on received satellite signals, so its performance is highly dependent on the quality of these received signals. The effect of noise and multi-path can often be large enough to produce significant errors in positioning. Satellite navigation is difficult in this situation. In such circumstances, GPS or GLONASS alone are often not able to ensure consistency and accuracy in positioning due to the absence (or low quality) of signals. The combination of these two systems is an appropriate solution to improve the situation. In positioning a receiver, one of the ways that is often used to reduce the error due to observation noise and calculation errors is Kalman Filter (KF) estimation. In this paper, some changes in the structure of the KF is applied to improve the accuracy of positioning. Process of updating KF's gain, is done in fuzzy form based on the parameters available in RINEX files, including the P code pseudo-range used as an input of the proposed fuzzy system. Simulation results show that applying a fuzzy KF based on P code pseudo-range on the available data sets, in terms of noise and blocking condition, reduces the positioning error respectively from 24 to 14 meters and 90 to 25 meters.


M. Safari, M. Eghtesadi, M. R. Mosavi,
Volume 12, Issue 2 (6-2016)
Abstract

In this paper, a new design of concurrent dual-band Low Noise Amplifier (LNA) for multi-band single-channel Global Navigation Satellite System (GNSS) receivers is proposed. This new structure is able to operate concurrently at frequency of 1.2 and 1.57 GHz. Parallel and series resonance parts are employed in the input matching in order to achieve concurrent performance. With respect to used pseudo-differential structure, LNA is basically a single-ended-to-differential conversion and it consequently has no need to balun. In addition, an inductively degenerated cascode approach is employed to have better simultaneous matching and Noise Figure (NF). Simulations are performed with TSMC  0.18 μm technology in ADS software. Results analysis present that LNA achieves input matchings of -11.024 and -13.131 dB, NFs of 2.315 and 2.333 dB, gains of 26.926 and 27.576 dB, P-1dB of -15.3 and -13 dBm, IIP3 of -0.9 and 2.2 dBm at 1.2 and 1.57 GHz, respectively. Besides, LNA consumes 8.32 mA DC current from a 1.8 V supply voltage.



Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.