Search published articles


Showing 2 results for Four-Leg Inverter

F. Hasanzad, H. Rastegar, G. B. Gharehpetian, M. Pichan,
Volume 13, Issue 2 (6-2017)
Abstract

Photovoltaic systems integrated to the grid have received considerable attention around the world. They can be connected to the electrical grid via galvanic isolation (transformer) or without it (transformerless). Despite making galvanic isolation, low frequency transformer increases size, cost and losses. On the other hand, transformerless PV systems increase the leakage current (common-mode current, (CMC)) through the parasitic capacitors of the PV array. Inverter topology and switching technique are the most important parameters the leakage current depends on. As there is no need to extra hardware for switching scheme modification, it's an economical method for reducing leakage current. This paper evaluates the effect of different space vector modulation techniques on leakage current for a two-level three-phase four-leg inverter used in PV system. It proposes an efficient space vector modulation method which decreases the leakage current to below the quantity specified in VDE-0126-1-1 standard. furthermore, some other characteristics of the space vector modulation schemes that have not been significantly discussed for four-leg inverter, are considered, such as, modulation index, switching actions per period, common-mode voltage (CMV), and total harmonic distortion (THD). An extend software simulation using MATLAB/Simulink is performed to verify the effectiveness of the modulation technique.


M. Pichan, E. Heydari, H. Rastegar,
Volume 13, Issue 4 (12-2017)
Abstract

Distributed generation (DG) will play an important role in future power generation systems, especially in stand-alone applications. Three phase four-leg inverter is a well-known topology which can be used as an interface power converter for DGs. Thanks to the fourth leg to provide the neutral path, the four-leg inverter is able to supply balanced loads as well as unbalanced loads. In this paper, the model of a three phase four-leg inverter with the fourth leg inductor in the αβγ reference frame is investigated thoroughly. Afterward, a decoupled model of the four-leg inverter is adopted to establish the proposed control method. Among non-linear control methods, pole-placement method is a famous solution to ensure fast transient response. Hence, in this paper, a pole-placement method via state feedback is proposed to control the output voltage of the four-leg inverter. Using this method, the transient performance of the system can be adjusted well. On the other hand, to guarantee good performance of the control system under steady state condition, a lead compensator is proposed to be used with the pole-placement method. Therefore, the proposed control system not only can provide fast dynamic response but also, it ensures very low steady state error. To validate the superior performance of the proposed control method, simulation and experimental results under various loading condition are provided based on a DSP-based digital control system.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.