Search published articles


Showing 19 results for Distributed Generation

A. Hajizadeh, M. Aliakbar-Golkar,
Volume 3, Issue 1 (1-2007)
Abstract

The operation of Fuel Cell Distributed Generation (FCDG) systems in distribution systems is introduced by modeling, controller design, and simulation study of a Solid Oxide Fuel Cell (SOFC) distributed generation (DG) system. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic control for the overall system is presented in order to active power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.
R. Noroozian, M. Abedi, G. B. Gharehpetian, S. H. Hosseini,
Volume 3, Issue 3 (7-2007)
Abstract

This paper describes a DC isolated network which is fed with Distributed Generation (DG) from photovoltaic (PV) renewable sources for supplying unbalanced AC loads. The battery energy storage bank has been connected to the DC network via DC/DC converter to control the voltage of the network and optimize the operation of the PV generation units. The PV arrays are connected to the DC network via its own DC/DC converter to ensure the required power flow. The unbalanced AC loads are connected to the DC network via its own DC/AC converter. This paper proposes a novel control strategy for storage converter which has a DC voltage droop regulator. Also a novel control system based on Park rotating frame has been proposed for DC/AC converters. In this paper, the proposed operation method is demonstrated by simulation of power transfer between PV arrays, unbalanced AC loads and battery unit. The simulation results based on PSCAD/EMTDC software show that DC isolated distribution system including PV generation systems can provide the high power quality to supplying unbalanced AC loads.
Reza Noroozian , Mehrdad Abedi , Gevorg B. Gharehpetian , Seyed Hossein Hosseini ,
Volume 5, Issue 2 (6-2009)
Abstract

This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC) generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO) DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.
M. Sharma, K. P. Vittal,
Volume 6, Issue 4 (12-2010)
Abstract

The recent trends in electrical power distribution system operation and management are aimed at improving system conditions in order to render good service to the customer. The reforms in distribution sector have given major scope for employment of distributed generation (DG) resources which will boost the system performance. This paper proposes a heuristic technique for allocation of distribution generation source in a distribution system. The allocation is determined based on overall improvement in network performance parameters like reduction in system losses, improvement in voltage stability, improvement in voltage profile. The proposed Network Performance Enhancement Index (NPEI) along with the heuristic rules facilitate determination of feasible location and corresponding capacity of DG source. The developed approach is tested with different test systems to ascertain its effectiveness.
J. Sadeh, E. Kamyab,
Volume 8, Issue 4 (12-2012)
Abstract

Islanded operation of distributed generators is a problem that can take place when they are connected to a distribution system. In this paper an islanding detection method is presented for inverter based distributed generation (DG) using under/over voltage relay. The method is an adaptive one and is based on the change of DG active power reference (Pref) in inverter control interface. The active power reference has a fixed value in normal condition, whereas, if the point of common coupling (PCC) voltage changes, Pref has determined as a linear function of voltage. The slope of Pref is dependent to the load active power (Pload) and should be changed if Pload changes. The non-detection zone (NDZ) of the proposed method is dependent on the accuracy of the voltage measurement equipment if changing of the PCC voltage is sensed, then, islanding will be detected if it is occurred. Also it does not have any negative effects on the distribution system in normal conditions. Moreover, the proposed technique can be applied when two-DG is in the island. The proposed method is evaluated according to the requirements of the IEEE 1547 and UL 1741 standards, using PSCAD/EMTDC software.
M. Bakhshi, R. Noroozian, G. Gharehpetian,
Volume 9, Issue 2 (6-2013)
Abstract

Identification of intentional and unintentional islanding situations of dispersed generators (DGs) is one of the most important protection concerns in power systems. Considering safety and reliability problems of distribution networks, an exact diagnosis index is required to discriminate the loss of the main network from the existing parallel operation. Hence, this paper introduces a new islanding detection method for synchronous machine–based DGs. This method uses the average value of the generator frequency to calculate a new detection index. The proposed method is an effective supplement of the over/under frequency protection (OFP/UFP) system. The analytical equations and simulation results are used to assess the performance of the proposed method under various scenarios such as different types of faults, load changes and capacitor bank switching. To show the effectiveness of the proposed method, it is compared with the performance of both ROCOF and ROCOFOP methods.
F. Amini, R. Kazemzadeh,
Volume 13, Issue 1 (3-2017)
Abstract

Development of distributed generations’ technology, trends in the use of these sources to improve some of the problems such as high losses, low reliability, low power quality and high costs in distributed networks. Choose the correct location to install and proper capacity of these sources, such as important things that must be considered in their use. Since distribution networks are actually unbalanced and asymmetric consumption loads are different, so in this paper with optimal placement and sizing of distributed generation sources that dependent on the load model and type of load connection and the uncertainties which caused by the generated power of wind turbines and solar panels, the positive effects of these sources have been examined on unbalanced distribution network. Hence with linear three-phase unbalanced load flow method and IPSO algorithm, allocation of distributed generation sources in IEEE standard of 37 bus unbalanced network have been done. Obtained results show improvement of voltage profile in each phase and reduction of network power losses and buses’ voltage unbalance factor. 


F. Nazari, A. Zangeneh, A. Shayegan-Rad,
Volume 13, Issue 1 (3-2017)
Abstract

By increasing the use of distributed generation (DG) in the distribution network operation, an entity called virtual power plant (VPP) has been introduced to control, dispatch and aggregate the generation of DGs, enabling them to participate either in the electricity market or the distribution network operation. The participation of VPPs in the electricity market has made challenges to fairly allocate payments and benefits between VPPs and distribution network operator (DNO). This paper presents a bilevel scheduling approach to model the energy transaction between VPPs and DNO.  The upper level corresponds to the decision making of VPPs which bid their long- term contract prices so that their own profits are maximized and the lower level represents the DNO decision making to supply electricity demand of the network by minimizing its overall cost. The proposed bilevel scheduling approach is transformed to a single level optimizing problem using its Karush-Kuhn-Tucker (KKT) optimality conditions. Several scenarios are applied to scrutinize the effectiveness and usefulness of the proposed model. 


M. Sedighizadeh, M. Esmaili, M. M. Mahmoodi,
Volume 13, Issue 3 (9-2017)
Abstract

Distribution systems can be operated in multiple configurations since they are possible combinations of radial and loop feeders. Each configuration leads to its own power losses and reliability level of supplying electric energy to customers. In order to obtain the optimal configuration of power networks, their reconfiguration is formulated as a complex optimization problem with different objective functions and network operating constraints. In this paper, a multi-objective framework is proposed for optimal network reconfiguration with objective functions of minimization of power losses, System Average Interruption Frequency Index (SAIFI), System Average Interruption Duration Index (SAIDI), Average Energy Not Supplied (AENS), and Average Service Unavailability Index (ASUI). The optimization problem is solved by the Imperialist Competitive Algorithm (ICA) as one of the most modern heuristic tools. Since objective functions have different scales, a fuzzy membership is utilized here to transform objective functions into a same scale and then to determine the satisfaction level of the afforded solution using the fuzzy fitness. The efficiency of the proposed method is confirmed by testing it on 32-bus and 69-bus distribution test systems. Simulation results demonstrate that the proposed method not only presents intensified exploration ability but also has a better converge rate compared with previous methods.
 


M. Esmaeilzadeh, I. Ahmadi, N. Ramezani,
Volume 14, Issue 2 (6-2018)
Abstract

Distributed generation (DG) has been widely used in distribution network to reduce the energy losses, improve voltage profile and system reliability, etc.  The location and capacity of DG units can influence on probability of protection mal-operation in distribution networks. In this paper, a novel model for DG planning is proposed to find the optimum DG location and sizing in radial distribution networks. The main purpose of the suggested model is to minimize the total cost including DG investment and operation costs. The operation costs include the cost of energy loss, the cost of protection coordination and also the mal-operation cost. The proposed DG planning model is implemented in MATLAB programming environment integrated with DIgSILENT software. The simulation results conducted on the standard 38-bus radial distribution network confirm the necessity of incorporating the protection coordination limits in the DG planning problem. Additionally, a sensitivity analysis has been carried out to illustrate the significance of considering these limits.

A. S. Hoshyarzadeh, B. Zaker, A. A. Khodadoost Arani, G. B. Gharehpetian,
Volume 14, Issue 3 (9-2018)
Abstract

Recently, smart grids have been considered as one of the vital elements in upgrading current power systems to a system with more reliability and efficiency. Distributed generation is necessary for most of these new networks. Indeed, in all cases that DGs are used in distribution systems, protection coordination failures may occur in multiple configurations of smart grids using DGs. In different configurations, there are various fault currents that can lead to protection failure. In this study, an optimal DG locating and Thyristor-Controlled Impedance (TCI) sizing of resistive, inductive, and capacitive type is proposed for distribution systems to prevent considerable changes in fault currents due to different modes of the smart grid. This problem is nonlinear constrained programming (NLP) and the genetic algorithm is utilized for the optimization. This optimization is applied to the IEEE 33-bus and IEEE 69-bus standard distribution systems. Optimum DG location and TCI sizing has carried out in steady fault currents in the grid-connected mode of these practical networks. Simulation results verify that the proposed method is effective for minimizing the protection coordination failure in such distribution networks.

S. Dolatabadi, S. Tohidi, S. Ghasemzadeh,
Volume 14, Issue 4 (12-2018)
Abstract

In this paper, a new active method based on traveling wave theory for islanding detection is presented. A standard power grid that combines a distributed generation source and local loads is used to test the proposed method. Simulations are carried out in MATLAB/Simulink and EMTP/rv which demonstrate fast response and zero non-detection zone (NDZ) of the method along with low perturbation.

A. Azghandi, S. M. Barakati, B. Wu,
Volume 14, Issue 4 (12-2018)
Abstract

A voltage source inverter (VSI) is widely used as an interface for distributed generation (DG) systems. However, high-power applications with increasing voltage levels require an extra power converter to reduce costs and complications. Thus, a current source inverter (CSI) is used. This study presents a precise phasor modeling and control details for a VSI-based system for DG and compares it with a CSI-based system. First, the dynamic characteristics of the system based on amplitude-phase transformation are investigated via small signal analysis in the synchronous reference frame. Moreover, the performance of the grid-connected system is determined by adopting the closed-loop control method based on the obtained dynamic model. The control strategies employ an outer active-power loop cascaded with an inner reactive-power loop, which the inner loop is a single-input single-output system without coupling terms. The sensitivity analysis of the linearized model indicates the dynamic features of the system. The simulation results for the different conditions confirm proposed model and design of the controller.

M. Sedighizadeh, S. M. M. Alavi, A. Mohammadpour,
Volume 16, Issue 3 (9-2020)
Abstract

Regarding the advances in technology and anxieties around high and growing prices of fossil fuels, government incentives increase to produce cleaner and sustainable energy through distributed generations. This makes trends in the using microgrids which consist of electric demands and different distributed generations and energy storage systems. The optimum operation of microgrids with considering demand-side management increases efficiency and reliability and maximize the advantages of using distributed generations. In this paper, the optimal operation scheduling and unit commitment of generation units installed in a microgrid are investigated. The microgrid consists of technologies based on natural gas that are microturbine and phosphoric acid fuel cell and technologies based on renewable energy, including wind turbine and photovoltaic unit along with battery energy storage system and plug-in electric vehicle commercial parking lot. The goal of the paper is to solve a multi-objective problem of maximizing revenues of microgrid operator and minimizing emissions. This paper uses an augmented epsilon constraint method for solving the multi-objective problem in a stochastic framework and also implements a fuzzy-based decision-maker for choosing the suitable optimal solution amid Pareto front solutions. This new model implements the three type of the price-based and incentive-based demand response program. It also considers the generation reserve in order to enhance the flexibility of operations. The presented model is tested on a microgrid and the results demonstrate the efficacy of the proposed model economically and environmentally compared to other methods.

M. Khajevand, A. Fakharian, M. Sedighizadeh,
Volume 16, Issue 3 (9-2020)
Abstract

Using distributed generations (DGs) with optimal scheduling and optimal distribution feeder reconfiguration (DFR) are two aspects that can improve efficiency as well as technical and economic features of microgrids (MGs). This work presents a stochastic copula scenario-based framework to jointly carry out optimal scheduling of DGs and DFR. This framework takes into account non-dispatchable and dispatchable DGs. In this paper, the dispatchable DG is a fuel cell unit and the non-dispatchable DGs with stochastic generation are wind turbines and photovoltaic cells. The uncertainties of wind turbine and photovoltaic generations, as well as electrical demand, are formulated by a copula-based method. The generation of scenarios is carried out by the scenario tree method and representative scenarios are nominated with scenario reduction techniques. To obtain a weighted solution among the various solutions made by several scenarios, the average stochastic output (ASO) index is used.  The objective functions are minimization of the operational cost of the MG, minimization of active power loss, maximization of voltage stability index, and minimization of emissions. The best-compromised solution is then chosen by using the fuzzy technique. The capability of the proposed model is investigated on a 33-bus MG. The simulation results show the efficiency of the proposed model to optimize objective functions, while the constraints are satisfied.

A. Boukaroura, L. Slimani, T. Bouktir,
Volume 16, Issue 3 (9-2020)
Abstract

The progression towards smart grids, integrating renewable energy resources, has increased the integration of distributed generators (DGs) into power distribution networks. However, several economic and technical challenges can result from the unsuitable incorporation of DGs in existing distribution networks. Therefore, optimal placement and sizing of DGs are of paramount importance to improve the performance of distribution systems in terms of power loss reduction, voltage profile, and voltage stability enhancement. This paper proposes a methodology based on Dragonfly Optimization Algorithm (DA) for optimal allocation and sizing of DG units in distribution networks to minimize power losses considering variations of load demand profile. Load variations are represented as lower and upper bounds around base levels. Efficiency of the proposed method is demonstrated on IEEE 33-bus and IEEE 69-bus radial distribution test networks. The results show the performance of this method over other existing methods in the literature.

S. Shadpey, M. Sarlak,
Volume 16, Issue 4 (12-2020)
Abstract

This paper presents a pattern recognition-based scheme for detection of islanding conditions in synchronous- based distributed generation (DG) systems. The main idea behind the proposed scheme is the use of spatial features of system parameters such as the frequency, magnitude of positive sequence voltage, etc. In this study, the system parameters sampled at the point of common coupling (PCC) were analyzed using reduced-noise morphological gradient (RNMG) tool, first. Then, the spatial features of the RNMG magnitudes were calculated. Next, to optimize and increase the ability of the proposed scheme for islanding detection, the best features with a much discriminating power were selected based on separability index (SI) calculation. Finally, to distinguish the islanding conditions from the other normal operation conditions, a support vector machine (SVM) classifier was trained based on the selected features. To investigate the power of the proposed scheme for islanding detection, the results of examinations on the various islanding conditions including system loading and grid operating state were presented.  These results show that the proposed algorithm reliably detect the islanding condition within 32.7 ms.

M. Najjarpour, B. Tousi, S. Jamali,
Volume 18, Issue 4 (12-2022)
Abstract

Optimal power flow is an essential tool in the study of power systems. Distributed generation sources increase network uncertainties due to their random behavior, so the optimal power flow is no longer responsive and the probabilistic optimal power flow must be used. This paper presents a probabilistic optimal power flow algorithm using the Taguchi method based on orthogonal arrays and genetic algorithms. This method can apply correlations and is validated by simulation experiments in the IEEE 30-bus network. The test results of this method are compared with the Monte Carlo simulation results and the two-point estimation method. The purpose of this paper is to reduce the losses of the entire IEEE 30-bus network. The accuracy and efficiency of the proposed Taguchi correlation method and the genetic algorithm are confirmed by comparison with the Monte Carlo simulation and the two-point estimation method. Finally, with this method, we see a reduction of 5.5 MW of losses.

Majid Najjarpour, Behrouz Tousi, Shahaboddin Yazdandoust Moghanlou,
Volume 20, Issue 1 (3-2024)
Abstract

In recent decades, because of the rapid population growth of the world, considerable changes in climate, the reduction of fossil fuel sources to consume the traditional power plants and their high depreciation, and the increase in fuel prices.  Due to the increased penetration of DG units which have a random nature into the power system, the ordinary equations of power flow must be changed. For the power system to operate in a stable condition estimating future demand and calculating the important and operational indexes such as losses of the power system is an important duty that must be done precisely and rapidly. In this paper, the Improved Taguchi method and phasor measurement unit are used to model the uncertainties of DGs and estimate the error of voltage, respectively. The results show that the magnitude error and the angle error of voltage are decreased using PMU. The applied optimal power flow and state estimations are analyzed and verified using standard IEEE 30-bus and 14-bus test power systems by MATLAB, and MINITAB softwares. The Made Strides Taguchi strategy appears to have modeled the DG units precisely and successfully, and using the PMU, the mistake of the point and greatness estimation is exceptionally moot. The values that were evaluated are very close to the values that were done by the Newton-Raphson stack stream.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.