Search published articles

Showing 2 results for Zangeneh

F. Nazari, A. Zangeneh, A. Shayegan-Rad,
Volume 13, Issue 1 (March 2017)

By increasing the use of distributed generation (DG) in the distribution network operation, an entity called virtual power plant (VPP) has been introduced to control, dispatch and aggregate the generation of DGs, enabling them to participate either in the electricity market or the distribution network operation. The participation of VPPs in the electricity market has made challenges to fairly allocate payments and benefits between VPPs and distribution network operator (DNO). This paper presents a bilevel scheduling approach to model the energy transaction between VPPs and DNO.  The upper level corresponds to the decision making of VPPs which bid their long- term contract prices so that their own profits are maximized and the lower level represents the DNO decision making to supply electricity demand of the network by minimizing its overall cost. The proposed bilevel scheduling approach is transformed to a single level optimizing problem using its Karush-Kuhn-Tucker (KKT) optimality conditions. Several scenarios are applied to scrutinize the effectiveness and usefulness of the proposed model. 

S. M. Hoseini, N. Vasegh, A. Zangeneh,
Volume 16, Issue 2 (June 2020)

In this paper, a robust local controller has been designed to balance the power for distributed energy resources (DERs) in an islanded microgrid. Three different DER types are considered in this study; photovoltaic systems, battery energy storage systems, and synchronous generators. Since DER dynamics are nonlinear and uncertain, which may destabilize the power system or decrease the performance, distributed robust nonlinear controllers are designed for the DERs. They are based on the Lyapunov stabilization theory and super-twisting integral sliding mode control which guarantees system stability and optimality simultaneously. The reference signals for each DER are generated by a supervisory controller as a power management system. The controllers proposed in this work are robust, have fast response times, and most importantly, the control signals satisfy physical system constraints. The designed controller stability and effectiveness are also verified using numerical simulations.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.