Search published articles

Showing 3 results for Tousi

B. Tousi, M. Farhadi-Kangarlu, M. Farzinnia,
Volume 15, Issue 3 (September 2019)

In this paper a new topology for Dynamic Voltage Restorer (DVR) with high frequency link is proposed. This topology is able to compensate different types of voltage disturbances such as voltage sag, voltage swell and voltage harmonics. According to the obtained equations, this topology operates as a controllable current source to charge the series capacitor. Due to using High Frequency Transformer (HFT), the volume and the weight of the proposed DVR is decreased in comparison with conventional DVRs. This topology contains two ac/ac converters which are using in the input and output of the device. The absence of DC link capacitors and storage elements is the other advantage of using the proposed structure. In order to verify the claimed features, the proposed topology has been simulated by PSCAD/EMTDC software and examined under several disturbance conditions. In addition, an experimental prototype has been designed and tested. The results of the simulation and experimental cases are presented.

M. Najjarpour, B. Tousi, S. Jamali,
Volume 18, Issue 4 (December 2022)

Optimal power flow is an essential tool in the study of power systems. Distributed generation sources increase network uncertainties due to their random behavior, so the optimal power flow is no longer responsive and the probabilistic optimal power flow must be used. This paper presents a probabilistic optimal power flow algorithm using the Taguchi method based on orthogonal arrays and genetic algorithms. This method can apply correlations and is validated by simulation experiments in the IEEE 30-bus network. The test results of this method are compared with the Monte Carlo simulation results and the two-point estimation method. The purpose of this paper is to reduce the losses of the entire IEEE 30-bus network. The accuracy and efficiency of the proposed Taguchi correlation method and the genetic algorithm are confirmed by comparison with the Monte Carlo simulation and the two-point estimation method. Finally, with this method, we see a reduction of 5.5 MW of losses.

Majid Najjarpour, Behrouz Tousi, Shahaboddin Yazdandoust Moghanlou,
Volume 20, Issue 1 (March 2024)

In recent decades, because of the rapid population growth of the world, considerable changes in climate, the reduction of fossil fuel sources to consume the traditional power plants and their high depreciation, and the increase in fuel prices.  Due to the increased penetration of DG units which have a random nature into the power system, the ordinary equations of power flow must be changed. For the power system to operate in a stable condition estimating future demand and calculating the important and operational indexes such as losses of the power system is an important duty that must be done precisely and rapidly. In this paper, the Improved Taguchi method and phasor measurement unit are used to model the uncertainties of DGs and estimate the error of voltage, respectively. The results show that the magnitude error and the angle error of voltage are decreased using PMU. The applied optimal power flow and state estimations are analyzed and verified using standard IEEE 30-bus and 14-bus test power systems by MATLAB, and MINITAB softwares. The Made Strides Taguchi strategy appears to have modeled the DG units precisely and successfully, and using the PMU, the mistake of the point and greatness estimation is exceptionally moot. The values that were evaluated are very close to the values that were done by the Newton-Raphson stack stream.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.