Search published articles


Showing 3 results for Samadi

R. Samadi, S. A. Seyedin,
Volume 10, Issue 2 (June 2014)
Abstract

Unintentional attacks on watermarking schemes lead to degrade the watermarking channel, while intentional attacks try to access the watermarking channel. Therefore, watermarking schemes should be robust and secure against unintentional and intentional attacks respectively. Usual security attack on watermarking schemes is the Known Message Attack (KMA). Most popular watermarking scheme with structured codebook is the Scalar Costa Scheme (SCS). The main goal of this paper is to increase security and robustness of SCS in the KMA scenario. To do this, SCS model is extended to more general case. In this case, the usual assumption of an infinite Document to Watermark Ratio (DWR) is not applied. Moreover watermark is assumed to be an arbitrary function of the quantization noise without transgressing orthogonality as in the Costa’s construction. Also, this case is restricted to the structured codebooks. The fundamental trade-off is proved between security and robustness of Generalized SCS (GSCS) in the KMA scenario. Based on this trade-off and practical security attack on SCS, a new extension of SCS is proposed which is called Surjective-SCS (SSCS). In the absence of robustness attack, the SSCS has more security than SCS in the same DWR. However, the SSCS achieves more security and robustness than SCS only in low Watermark to Noise Ratio (WNR) regime or low rate communications.
M. Aghamohamadi, M. Samadi, M. Pirnahad,
Volume 15, Issue 1 (March 2019)
Abstract

The integration of different energy types and new technological advances in multi-energy infrastructures, enable energy hubs (EH) to supply load demands at a lower cost which may affect the price responsive loads, since the energy could be offered with a lower price at the EH output ports, compared to the upstream energy markets. In this paper a new EH operation model is proposed by which the optimal responsive load modifications against the obtained EH output energy prices as well as the EH schedules are determined. To achieve this goal, a tri-step approach is proposed. At the first step the EH output energy prices are obtained for each energy type in each hour of the scheduling horizon. These energy prices are based on the EH hourly operation and would change as the EH operation changes. At the second step, the optimal responsive load modifications against the obtained EH output energy prices are simulated using the new proposed integrated responsive load model which is capable to model the price responsive loads in multi-energy systems for any type of energy carrier. Since, any changes in load demand (due to its responsiveness) can jeopardize the EH power balance constraint, the obtained EH operation would be infeasible, considering the new modified load pattern. To cope with this interdependency, a new iterative methodology is proposed at the third step in which, the EH optimal operation + EH output energy price determination + responsive load modification is implemented in a loop till the 24 hour aggregated load modification becomes lower than the pre-determined convergence tolerance. Based on the obtained results from solving the proposed methodology through a comprehensive case study, the aggregated supplied energy has been increased by 7.3%, while, the customers payments has reduced by 14.6%. Accordingly, the customer’s satisfaction has increased.

A. Mirsamadi, Y. Damchi, M. Assili,
Volume 17, Issue 1 (March 2021)
Abstract

Power systems should have acceptable reliability in order to operate properly. Highly available and dependable protective relays help to obtain the desirable reliability. The relays should be periodically evaluated during specific intervals to achieve the mentioned characteristics. The Routine Test Interval (RTI) should be optimized in order to economically maximize the reliability of the protection system. The failure rate of the relays plays a vital role in determination of the Optimum Routine Test Interval (ORTI). Human error is one of the effective factors in the failure rate of the relays. Therefore, in this paper, a Markov model is proposed to investigate the impact of human error on the failure rate and the ORTI of the protection system. The model is applied for the protection system of power transformer. The obtained results indicated that human error has a significant impact on the increase of protection system failure, the decrease of the desired reliability indices, and the reduction of ORTI of the protection system.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.