Search published articles


Showing 1 results for Safavi

Z. Kazemi, A. A. Safavi,
Volume 16, Issue 3 (September 2020)
Abstract

Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper, the basic KF-based method is enhanced by incorporating the dynamics of the attack vector into the system state-space model using an observer-based preprocessing stage. The proposed technique not only immunizes the state estimation against cyber-attacks but also effectively handles the issues relevant to the modeling uncertainties and measurement noises/errors. The effectiveness of the proposed approach is demonstrated by detailed mathematical analysis and testing it on two well-known IEEE cyber-physical test systems.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.