H. Rajabi Mashhadi, H. Safari Farmad,
Volume 11, Issue 1 (March 2015)
Abstract
The main goal of this paper is to present a new day-ahead energy acquisition model for a distribution company (Disco) in a competitive electricity market environment with Interruptible Load (IL). The work formulates the Disco energy acquisition model as a bi-level optimization problem with some of real issues, and then studies and designs a Genetic Algorithm (GA) of this optimization problem too. To achieve this goal, a novel two-step procedure is proposed. At the first step, a realistic model for an industrial interruptible load is introduced, and it is shown that Interruptible load model may affect the problem modeling and solving. At the second step, Disco energy acquisition program is formulated and solved with this realistic model. As a result, this paper shows energy acquisition programming model with ILs, by considering real assumptions. The introduced method shows a good performance of problem modeling and solving algorithm both in terms of solution quality and computational results. In addition, a case study is carried out considering a test system with some assumptions. Subsequently results show the general applicability of the proposed model with potential cost saving for the Disco
M. Safari, M. Eghtesadi, M. R. Mosavi,
Volume 12, Issue 2 (June 2016)
Abstract
In this paper, a new design of concurrent dual-band Low Noise Amplifier (LNA) for multi-band single-channel Global Navigation Satellite System (GNSS) receivers is proposed. This new structure is able to operate concurrently at frequency of 1.2 and 1.57 GHz. Parallel and series resonance parts are employed in the input matching in order to achieve concurrent performance. With respect to used pseudo-differential structure, LNA is basically a single-ended-to-differential conversion and it consequently has no need to balun. In addition, an inductively degenerated cascode approach is employed to have better simultaneous matching and Noise Figure (NF). Simulations are performed with TSMC 0.18 μm technology in ADS software. Results analysis present that LNA achieves input matchings of -11.024 and -13.131 dB, NFs of 2.315 and 2.333 dB, gains of 26.926 and 27.576 dB, P-1dB of -15.3 and -13 dBm, IIP3 of -0.9 and 2.2 dBm at 1.2 and 1.57 GHz, respectively. Besides, LNA consumes 8.32 mA DC current from a 1.8 V supply voltage.
A. Safari, H. Ardi,
Volume 14, Issue 1 (March 2018)
Abstract
In this paper, sliding mode control (SMC) for a bidirectional buck/boost DC-DC converter (BDC) with constant frequency in continuous conduction mode (CCM) is discussed. Since the converter is a high-order converter, the reduced-order sliding manifold is exploited. Because of right-half-plan zero (RHPZ) in the converter’s duty ratio to output voltage transfer function, sliding mode current controller is used. This controller benefits from various advantages such as fast dynamic response, robustness, stable and small variation of the settling time over a wide range of operation conditions. Because the converter operates in both step-down and step-up modes, two sliding manifold is derived for each mode. The existence and stability conditions are analyzed for both SMC in step-down and step-up modes. Finally, Simulation results are also provided to justify the feasibility of the controller using MATLAB/Simulink.