Showing 3 results for Prakash
S. Thangaprakash, A. Krishnan,
Volume 6, Issue 2 (June 2010)
Abstract
New control circuits and algorithms are frequently proposed to control the
impedance (Z) source inverter in efficient way with added benefits. As a result, several
modified control techniques have been proposed in recent years. Although these techniques
are clearly superior to the simple boost control method which was initially proposed along
with the Z-source inverter (ZSI), little or conflicting data is available about their merits
relating to each other. In this paper, it is shown how the shoot-through periods are inserted
in the switching waveforms of the power switches and the performances of them are
analyzed based on the operation of ZSI. Simple boost control, maximum boost control,
constant boost control and space vector modulation based control methods given in the
literature has been illustrated with their control characteristics. A critical investigation on
ripples of the impedance source elements, output voltage controllability, output harmonic
profile, transient response of the voltage across the impedance source capacitor and voltage
stress ratio etc has been presented with the simulation results. The simulation results are
experimentally verified in the laboratory with digital signal processors (DSP). DSP coding
for the above all control techniques has been generated by interfacing Matlab/Simulink
with DSP C6000 tool box and signal processing block set.
R Subramanian, K Thanushkodi, A Prakash,
Volume 9, Issue 4 (December 2013)
Abstract
The Economic Load Dispatch (ELD) problems in power generation systems are to reduce the fuel cost by reducing the total cost for the generation of electric power. This paper presents an efficient Modified Firefly Algorithm (MFA), for solving ELD Problem. The main objective of the problems is to minimize the total fuel cost of the generating units having quadratic cost functions subjected to limits on generator true power output and transmission losses. The MFA is a stochastic, Meta heuristic approach based on the idealized behaviour of the flashing characteristics of fireflies. This paper presents an application of MFA to ELD for six generator test case system. MFA is applied to ELD problem and compared its solution quality and computation efficiency to Genetic algorithm (GA), Differential Evolution (DE), Particle swarm optimization (PSO), Artificial Bee Colony optimization (ABC), Biogeography-Based Optimization (BBO), Bacterial Foraging optimization (BFO), Firefly Algorithm (FA) techniques. The simulation result shows that the proposed algorithm outperforms previous optimization methods.
Mon Prakash Upadhyay, Arjun Deo, Ajitanshu Vedratnam ,
Volume 21, Issue 1 (March 2025)
Abstract
This paper provides an overview of the current innovations in Building Integrated Photovoltaic Thermal Systems. This paper briefly describes varying performance evaluation techniques, optimisation techniques, and the environmental impact and cost implication of Building Integrated Photovoltaic Thermal systems. The results reveal high energy-pin efficiency with Building Integrated Photovoltaic Thermal systems of over 50% and more efficient than when the two systems are incorporated separately. Exergy analysis is a more insightful means of analyzing system effectiveness than energy analysis. The paper covers the current algorithms for various optimisation algorithms such as Genetic Algorithms and Particle Swarm Optimisation that provide enhanced utilization improvements. An evaluation of the environmental impact of Building Integrated Photovoltaic Thermal in terms of carbon dioxide emission reduction and building energy optimisation is made. The results of the life cycle cost studies show that, even though the initial cost is higher than conventional solutions, the overall economic profit is more significant in the future. Some of the challenges described in the paper include increased initial costs and sophisticated integration procedures. In contrast, possible future developments include new materials, Building Integrated Photovoltaic Thermal system standardization, and integration in smart grids. This review is intended to be a state-of-the-art source of information for researchers, engineers, architects, and policymakers involved in enhancing sustainable building technologies using building-integrated photovoltaic thermal systems.