Search published articles


Showing 1 results for Onasanya

A. O. Issa, A. I. Abdullateef, A. Sulaiman, A. Y. Issa, M. J. E. Salami, M. A. Onasanya ,
Volume 19, Issue 3 (September 2023)
Abstract

Grid-connected photovoltaic (PV) system is often needed whenever utilities fail to provide consumers with a reliable, sufficient and quality power supply. It provides more effective utilization of power, however, there are technical requirements to ensure the safety of the PV installation and utility grid reliability. In solar systems there is often excessive use of components, resulting in high installation costs. Consequently, appropriate measures must be taken to develop a cost-effective grid-connected PV system. An optimally sized PV system incorporated into an existing unreliable grid-connected commercial load for Mount Olive food processing is presented in this paper. The study focused on providing a reliable electricity supply which is cost-effective and environment-friendly. The techno-economic analysis of grid-connected PV/Diesel/Battery Storage systems was carried out using HOMER Pro software. Results showed that Grid/PV/BSS are technically, economically and environmentally feasible with the cost of energy at 0.136$/kWh and net present cost at $254,469. Also, the excess electricity produced by this combination is 13,264kWh/year, which generates income for the company by selling excess generated energy back to the grid if net metering were to be implemented. Furthermore, the CO2 emissions for these combinations decreased to 10,081.6 kg/year as compared to the existing systems (Grid/Diesel Generator) with emissions of 124,480 kg/year. This is an additional advantage in that it improves the greenhouse effect. A sensitivity analysis was carried out on the variation of load change, grid power price and schedule outages for the optimal system. 


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.