Showing 2 results for M. de Andrés
P. Ramezanpour, M. Aghababaie, M. R. Mosavi, D. M. de Andrés,
Volume 18, Issue 2 (June 2022)
Abstract
Through beamforming, the desired signal is estimated by calculating the weighted sum of the input signals of an array of antenna elements. In the classical beamforming methods, computing the optimal weight vector requires prior knowledge on the direction of arrival (DoA) of the desired signal sources. However, in practice, the DoA of the signal of interest is unknown. In this paper, we introduce two different deep-neural-network-based beamformers which can estimate the signal of interest while suppressing noise and interferences in two/three stages when the DoAs are unknown. Employing deep neural networks (DNNs) such as convolutional neural networks (CNNs) and bidirectional long short-term memory (bi-LSTM) networks enables the proposed method to have better performance than existing methods. In most cases, the output signal to interference and noise ratio (SINR) of the proposed beamformer is more than 10dB higher than the output SINR of the classical beamformers.
K. Zarrinnegar, S. Tohidi, M. R. Mosavi, A. Sadr, D. M. de Andrés,
Volume 19, Issue 1 (March 2023)
Abstract
The Global Positioning System (GPS) is vulnerable to various deliberate and unintentional interferences. Therefore, identifying and coping with various interferences in this system is essential. This paper analyzes a method of reducing the dimensions of Cross Ambiguity Function (CAF) images in improving the identification of spoofing interference at the GPS using Multi-Layer Perceptron Neural Network (MLP NN) and Convolutional Neural Network (CNN). Using the proposed method reduces data complexity, which can reduce the number of learning data requirements. The simulation results indicate that, by applying the proposed image processing algorithm for different dimensions of CAF images, the CNN performs better than MLP NN in terms of training accuracy; the MLP NN is superior to CNN in terms of convergence speed of training. In addition, the results demonstrate that the operation of the proposed method is appropriate in the case of small-delay spoofed signals. Therefore, for the intervals above 0.25 code chip, the proposed method detects spoofing attacks with a correct detection probability close to one.