Search published articles


Showing 2 results for Jana

P. Gupta, S. K. Jana,
Volume 17, Issue 2 (June 2021)
Abstract

The advancement in the integrated circuit design has developed the demand for low voltage portable analog devices in the market. This demand has increased the requirement of the low-power RF transceiver. A low-power phase lock loop (PLL) is always desirable to fulfill the need for a low power RF transceiver. This paper deals with the designing of the low power transconductance- capacitance (Gm-C) based loop filter with the help of the gate-driven quasi bloating Bulk (GD-QFB) MOS technique. The GD-QFB MOS-based operational transconductance amplifier (OTA) has been proposed with a high dc gain of 82.41 dB and less power consumption of 188.72 µW. Further, Gm-C based active filter has been designed with the help of the proposed GD-QFB OTA. The simulation results of Gm-C filter attain a -3 dB cut-off frequency of 59.08 MHz and power consumption of 188.31µW at the supply voltage of 1V. The proposed Gm-C filter is suitable for the designing of 1-3 GHz low power PLL.

Pravat Biswal, Veera Venkata Subrahmanya Kumar Bhajana, Pavel Drabek,
Volume 18, Issue 4 (December 2022)
Abstract

This paper proposes two new soft-switching transformerless converters with high voltage conversion ratio. These proposed converters achieve soft-switching each with a single auxiliary resonant cell. The merit of these converters is reduced switching losses with lesser number of devices. The main switching devices are turned off with zero current switching (ZCS). Apart from the soft-switching feature, the voltage conversion ratio is increased in comparison with the existing topologies. The operating principles and the simulation results on 12V/200V/500W converter system are presented in this paper.
 

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.