Search published articles


Showing 3 results for Ghayeni

M. Ghayeni, R. Ghazi,
Volume 6, Issue 2 (June 2010)
Abstract

This paper presents a method to allocate the transmission network costs to users based on nodal pricing approach by regulating the nodal prices from the marginal point to the new point. Transmission nodal pricing based on marginal prices is not able to produce enough revenue to recover the total transmission network costs. However, according to the previous studies in this context, this method recovers only a portion of transmission costs. To solve this problem, in this paper a method is presented in which by considering the direction and amount of injected power in each node the marginal price is regulated to the new price, in such a way as the nodal pricing can recover the total transmission network costs. Also the proposed method is able to control the cost splitting between loads and generators in accordance with the pre-specified ratio. The proposed method is implemented on both IEEE 24-bus and 118-bus test systems and the obtained results are reported.
M. Ghayeni, R. Ghazi,
Volume 6, Issue 4 (December 2010)
Abstract

This paper proposes an algorithm for transmission cost allocation (TCA) in a large power system based on nodal pricing approach using the multi-area scheme. The nodal pricing approach is introduced to allocate the transmission costs by the control of nodal prices in a single area network. As the number of equations is dependent on the number of buses and generators, this method will be very time consuming for large power systems. To solve this problem, the present paper proposes a new algorithm based on multi-area approach for regulating the nodal prices, so that the simulation time is greatly reduced and therefore the TCA problem with nodal pricing approach will be applicable for large power systems. In addition, in this method the transmission costs are allocated to users more equitable. Since the higher transmission costs in an area having a higher reliability are paid only by users of that area in contrast with the single area method, in which these costs are allocated to all users regardless of their locations. The proposed method is implemented on the IEEE 118 bus test system which comprises three areas. Results show that with application of multi-area approach, the simulation time is greatly reduced and the transmission costs are also allocated to users with less variation in new nodal prices with respect to the single area approach.
M. Ghayeni,
Volume 15, Issue 4 (December 2019)
Abstract

In this paper, the new approach for the transmission reliability cost allocation (TRCA) problem is proposed. In the conventional TRCA problem, for calculating the contribution of each user (generators & loads or contracts) in the reliability margin of each transmission line, the outage analysis is performed for all system contingencies. It is obvious that this analysis is very time-consuming for large power systems. This paper suggests that this calculation should be done only for major contingencies. To do this, at first, the contingency filtering technique (CFT) is introduced based on the new economic indices that quantify the severity of each contingency to determine the critical contingencies. Then the results of contingency filtering are used in the TRCA problem. The simulation results are reported for the IEEE 118-bus test system. The obtained results show that by application of CFT in TRCA problem, the simulation time is greatly reduced, but the percentage of error remains within an acceptable limit.​


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.