Search published articles


Showing 9 results for Gharehpetian

R. Noroozian, M. Abedi, G. B. Gharehpetian, S. H. Hosseini,
Volume 3, Issue 3 (October 2007)
Abstract

This paper describes a DC isolated network which is fed with Distributed Generation (DG) from photovoltaic (PV) renewable sources for supplying unbalanced AC loads. The battery energy storage bank has been connected to the DC network via DC/DC converter to control the voltage of the network and optimize the operation of the PV generation units. The PV arrays are connected to the DC network via its own DC/DC converter to ensure the required power flow. The unbalanced AC loads are connected to the DC network via its own DC/AC converter. This paper proposes a novel control strategy for storage converter which has a DC voltage droop regulator. Also a novel control system based on Park rotating frame has been proposed for DC/AC converters. In this paper, the proposed operation method is demonstrated by simulation of power transfer between PV arrays, unbalanced AC loads and battery unit. The simulation results based on PSCAD/EMTDC software show that DC isolated distribution system including PV generation systems can provide the high power quality to supplying unbalanced AC loads.
Reza Noroozian , Mehrdad Abedi , Gevorg B. Gharehpetian , Seyed Hossein Hosseini ,
Volume 5, Issue 2 (June 2009)
Abstract

This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC) generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO) DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.
M. Bakhshi, R. Noroozian, G. Gharehpetian,
Volume 9, Issue 2 (June 2013)
Abstract

Identification of intentional and unintentional islanding situations of dispersed generators (DGs) is one of the most important protection concerns in power systems. Considering safety and reliability problems of distribution networks, an exact diagnosis index is required to discriminate the loss of the main network from the existing parallel operation. Hence, this paper introduces a new islanding detection method for synchronous machine–based DGs. This method uses the average value of the generator frequency to calculate a new detection index. The proposed method is an effective supplement of the over/under frequency protection (OFP/UFP) system. The analytical equations and simulation results are used to assess the performance of the proposed method under various scenarios such as different types of faults, load changes and capacitor bank switching. To show the effectiveness of the proposed method, it is compared with the performance of both ROCOF and ROCOFOP methods.
A. A. Khodadoost Arani, J. S. Moghani, A. Khoshsaadat, G. B. Gharehpetian,
Volume 12, Issue 2 (June 2016)
Abstract

Multilevel voltage source inverters have several advantages compare to traditional voltage source inverter. These inverters reduce cost, get better voltage waveform and decrease Total Harmonic Distortion (THD) by increasing the levels of output voltage. In this paper Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods are used to find the switching angles for achieving to the minimum THD for output voltage waveform of the Cascaded H-bridge Multi-Level Inverters (MLI). These methods are used for a 27-level inverter for different modulation indices. Result of two methods is identical and in comparison to other methods have the smallest THD. To verify results of two mentioned methods, a simulation using MATLAB/Simulink software is presented.


A. A. Khodadoost Arani, B. Zaker, G. B. Gharehpetian,
Volume 13, Issue 1 (March 2017)
Abstract

The Micro-Grid (MG) stability is a significant issue that must be maintained in all operational modes. Usually, two control strategies can be applied to MG; V/f control and PQ control strategies. MGs with V/f control strategy should have some Distributed Generators (DGs) which have fast responses versus load changes. The Flywheel Energy Storage System (FESS) has this characteristic. The FESS, which converts the mechanical energy to electrical form, can generate electrical power or absorb the additional power in power systems or MGs. In this paper, the FESS structure modeled in detail and two control strategies (V/f and PQ control) are applied for this application. In addition, in order to improve the MG frequency and voltage stability, two complementary controllers are proposed for the V/f control strategy; conventional PI and Fuzzy Controllers. A typical low voltage network, including FESS is simulated for four distinct scenarios in the MATLAB/ Simulink environment. It is shown that fuzzy controller has better performance than conventional PI controller in islanded microgrid.


J. Fallah Ardashir, M. Sabahi, S. H. Hosseini, E. Babaei, G. B. Gharehpetian,
Volume 13, Issue 2 (June 2017)
Abstract

This paper proposes a new single phase transformerless Photovoltaic (PV) inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC) technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.


F. Hasanzad, H. Rastegar, G. B. Gharehpetian, M. Pichan,
Volume 13, Issue 2 (June 2017)
Abstract

Photovoltaic systems integrated to the grid have received considerable attention around the world. They can be connected to the electrical grid via galvanic isolation (transformer) or without it (transformerless). Despite making galvanic isolation, low frequency transformer increases size, cost and losses. On the other hand, transformerless PV systems increase the leakage current (common-mode current, (CMC)) through the parasitic capacitors of the PV array. Inverter topology and switching technique are the most important parameters the leakage current depends on. As there is no need to extra hardware for switching scheme modification, it's an economical method for reducing leakage current. This paper evaluates the effect of different space vector modulation techniques on leakage current for a two-level three-phase four-leg inverter used in PV system. It proposes an efficient space vector modulation method which decreases the leakage current to below the quantity specified in VDE-0126-1-1 standard. furthermore, some other characteristics of the space vector modulation schemes that have not been significantly discussed for four-leg inverter, are considered, such as, modulation index, switching actions per period, common-mode voltage (CMV), and total harmonic distortion (THD). An extend software simulation using MATLAB/Simulink is performed to verify the effectiveness of the modulation technique.


A. S. Hoshyarzadeh, B. Zaker, A. A. Khodadoost Arani, G. B. Gharehpetian,
Volume 14, Issue 3 (September 2018)
Abstract

Recently, smart grids have been considered as one of the vital elements in upgrading current power systems to a system with more reliability and efficiency. Distributed generation is necessary for most of these new networks. Indeed, in all cases that DGs are used in distribution systems, protection coordination failures may occur in multiple configurations of smart grids using DGs. In different configurations, there are various fault currents that can lead to protection failure. In this study, an optimal DG locating and Thyristor-Controlled Impedance (TCI) sizing of resistive, inductive, and capacitive type is proposed for distribution systems to prevent considerable changes in fault currents due to different modes of the smart grid. This problem is nonlinear constrained programming (NLP) and the genetic algorithm is utilized for the optimization. This optimization is applied to the IEEE 33-bus and IEEE 69-bus standard distribution systems. Optimum DG location and TCI sizing has carried out in steady fault currents in the grid-connected mode of these practical networks. Simulation results verify that the proposed method is effective for minimizing the protection coordination failure in such distribution networks.

Reza Behnam, Gevork Gharehpetian,
Volume 18, Issue 4 (December 2022)
Abstract

State estimation is used in power systems to estimate grid variables based on meter measurements. Unfortunately, power grids are vulnerable to cyber-attacks. Reducing cyber-attacks against state estimation is necessary to ensure power system safe and reliable operation. False data injection (FDI) is a type of cyber-attack that tampers with measurements. This paper proposes network reconfiguration as a strategy to decrease FDI attacks on distribution system state estimation. It is well-known that network reconfiguration is a common approach in distribution systems to improve the system’s operation. In this paper, a modified switch opening and exchange (MSOE) method is used to reconfigure the network. The proposed method is tested on the IEEE 33-bus system. It is shown that network reconfiguration decreases the power measurements manipulation under false data injection attacks. Also, the resilient configuration of the distribution system is achieved, and the best particular configuration for reducing FDI attacks on each bus is obtained. 
 


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.