Search published articles


Showing 3 results for Ehsaeyan

E. Ehsaeyan,
Volume 12, Issue 1 (March 2016)
Abstract

The use of wavelets in denoising, seems to be an advantage in representing well the details. However, the edges are not so well preserved. Total variation technique has advantages over simple denoising techniques such as linear smoothing or median filtering, which reduce noise, but at the same time smooth away edges to a greater or lesser degree. In this paper, an efficient denoising method based on Total Variation model (TV), and Dual-Tree Complex Wavelet Transform (DTCWT) is proposed to incorporate both properties. In our method, TV is employed to refine low-passed coefficients and DTCWT is used to shrink high-passed noisy coefficients to achieve more accurate image recovery. The efficiency of our approach is firstly analyzed by comparing the results with well-known methods such as probShrink, BLS-GSM, SUREbivariate, NL-Means and TV model. Secondly, it is compared to some denoising methods, which have been reported recently. Experimental results show that the proposed method outperforms the Steerable pyramid denoising by 8.5% in terms of PSNR and 17.5% in terms of SSIM for standard images. Obtained results convince us that the proposed scheme provides a better performance in noise blocking among reported state-of-the-art methods.


E. Ehsaeyan,
Volume 12, Issue 2 (June 2016)
Abstract

Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising and destroys the flatness of homogenous area. Wavelets are not very effective in dealing with multidimensional signals containing distributed discontinuities such as edges. This paper develops an effective shearlet-based denoising method with a strong ability to localize distributed discontinuities to overcome this limitation. The approach introduced here presents two major contributions: (a) Shearlet Transform is designed to get more directional subbands which helps to capture the anisotropic information of the image; (b) coefficients are divided into low frequency and high frequency subband. Then, the low frequency band is refined by Wiener filter and the high-pass bands are denoised via NeighShrink model. Our framework outperforms the wavelet transform denoising by %7.34 in terms of PSNR (peak signal-to-noise ratio) and %13.42 in terms of SSIM (Structural Similarity Index) for ‘Lena’ image. Our results in standard images show the good performance of this algorithm, and prove that the algorithm proposed is robust to noise.


E. Ehsaeyan,
Volume 13, Issue 3 (September 2017)
Abstract

Image denoising as a pre-processing stage is a used to preserve details, edges and global contrast without blurring the corrupted image. Among state-of-the-art algorithms, block shrinkage denoising is an effective and compatible method to suppress additive white Gaussian noise (AWGN). Traditional NeighShrink algorithm can remove the Gaussian noise significantly, but loses the edge information instead. To overcome this drawback, this paper aims to develop an improvement shrinkage algorithm in the wavelet space based on the NeighSURE Shrink. We establish a novel function to shrink neighbor coefficients and minimize Stein’s Unbiased Risk Estimate (SURE). Some regularization parameters are employed to form a flexible threshold and can be adjusted via genetic algorithm (GA) as an optimization method with SURE fitness function. The proposed function is verified to be competitive or better than the other Shrinkage algorithms such as OracleShrink, BayesShrink, BiShrink, ProbShrink and SURE Bivariate Shrink in visual quality measurements. Overall, the corrected NeighShrink algorithm improves PSNR values of denoised images by 2 dB.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.