Search published articles

Showing 4 results for Doroudi

H. Fallah Khoshkar, A. Doroudi, M. Mohebbi,
Volume 10, Issue 4 (December 2014)

This paper studies the effects of symmetrical voltage sags on the operational characteristics of a Permanent Magnet Synchronous Motor (PMSM) by Finite Element Method (FEM). Voltage sags may cause high torque pulsations which can damage the shaft or equipment connected to the motor. By recognizing the critical voltage sags, sags that produce hazardous torque variations could be prevented. Simulations results will be provided and the critical voltage sags are recognized. A simple theoretical analysis will also be presented to obtain a qualitative understanding of the phenomena occurring in PMSM during symmetrical voltage sags
M. Ghaseminezhad, A. Doroudi, S. H. Hosseinian, A. Jalilian,
Volume 17, Issue 1 (March 2021)

Nowadays study of input voltage quality on induction motors behavior has become a controversial subject due to the wide application of these motors in the industry. The impact of grid voltage fluctuations on the performance of induction motors can be included in this area. The majority of papers devoted to the influence of voltage fluctuations on the induction motors are focusing only on the solving of d-q state equations or steady-state equivalent circuit analysis. In this paper, a new approach to this issue is investigated by field analysis which studies the effects of voltage fluctuations on the magnetic fluxes of induction motors. New analytical expressions to approximate the airgap flux density and the torque under-voltage fluctuation conditions are presented. These characteristics are also calculated directly by the finite-element method considering the magnetic saturation and the harmonic fields. Finally, experimental results on a typical induction motor are employed to validate the accuracy of analytical and simulation results.

M. Keshavarz, A. Doroudi, M. H. Kazemi, N. Mahdian Dehkordi,
Volume 17, Issue 2 (June 2021)

The droop control strategy is the most common approach for microgrids control but its application is limited due to frequency deviation following a load change. Complementary control strategy has then been proposed to solve the problem using a communication network. However, under this strategy, regular loads profile produces a continuous change of output power of all distributed generators (DGs) and their generation changes seem to be permanent. This also causes continuous data exchange between DGs through communication links. This paper shows the possibility of adapting the droop/isochronous control methodology used by synchronous generators in conventional power systems to provide frequency control and power balance to inverter-based distributed generation power systems. To this end, this paper presents a centralized complementary control framework for the management of power-sharing and sustaining frequency in its nominal range in microgrids using a hybrid droop-isochronous control system.  The proposed method is event-triggered based and communication between DGs is only needed when the output power of the isochronous generator exceeds its power limits. The method provides an efficient and reliable control system and has a simple concept, easy, and cost-effective implementation. Simulations in MATLAB/SimPower are performed on a typical microgrid under various conditions to evaluate the performance of the proposed controller.

Fatemeh Zare-Mirakabad, Mohammad Hosein Kazemi, Aref Doroudi,
Volume 19, Issue 3 (September 2023)

This paper proposes a robust H ∞ -LMI-based primary controller using the Linear Parameter Varying (LPV) modeling for an AC islanded Micro-Grid (IMG). The proposed controller can regulate the frequency and voltage of the IMG under various scenarios, such as load changes, faults, and reconfigurations. Unlike most previous studies that neglected the nonlinearity and uncertainty of the system, this paper represents the system dynamics as a polytopic LPV model in the novel primary control structure. The proposed method computes a state-feedback control by solving the corresponding Linear Matrix Inequalities (LMIs) based on H ∞ performance and stability criteria. The robust primary control is applied to a test IMG in the SIM-POWER environment of MATLAB and evaluated under different scenarios. The simulation results demonstrate the effectiveness and efficiency of the proposed method in maintaining the stability of the frequency and voltage of the IMG.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.