Search published articles


Showing 2 results for Barakati

A. Azghandi, S. M. Barakati, B. Wu,
Volume 14, Issue 4 (December 2018)
Abstract

A voltage source inverter (VSI) is widely used as an interface for distributed generation (DG) systems. However, high-power applications with increasing voltage levels require an extra power converter to reduce costs and complications. Thus, a current source inverter (CSI) is used. This study presents a precise phasor modeling and control details for a VSI-based system for DG and compares it with a CSI-based system. First, the dynamic characteristics of the system based on amplitude-phase transformation are investigated via small signal analysis in the synchronous reference frame. Moreover, the performance of the grid-connected system is determined by adopting the closed-loop control method based on the obtained dynamic model. The control strategies employ an outer active-power loop cascaded with an inner reactive-power loop, which the inner loop is a single-input single-output system without coupling terms. The sensitivity analysis of the linearized model indicates the dynamic features of the system. The simulation results for the different conditions confirm proposed model and design of the controller.

Seyed Masoud Barakati, Farzad Tahmasebi,
Volume 19, Issue 3 (September 2023)
Abstract

Increasing the penetration of distributed generation (DG) systems in power systems has many advantages, but it also has problems, including interference with the proper functioning of the protection systems. This problem is severe in microgrid systems that contain many DGs. Overcurrent relays are one of the most critical protection equipment of protection systems. The DG sources significantly change the characteristics of fault currents and the protection designs as well as the coordination of overcurrent relays. This paper proposes a coordination method for directional overcurrent relays with dual adjustment to resolve the interference problem in the protection system of a microgrid in the presence of distributed generation sources based on the electronic power converter (inverter). This is done by considering the curve of different standard characteristics according to the IEC60255 standard in two operating modes, the grid-connected and islanded. A genetic optimization algorithm is used to reduce the total operating time of the relays. The simulation results verify the effectiveness of the proposed coordination method. The results show that the protection coordination scheme with dual adjustment relays and the use of combined characteristic curves can significantly reduce the operating time of the total relays.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.