Search published articles

Showing 2 results for Amirahmadi

Sh. Gorgizadeh, A. Akbari Foroud, M. Amirahmadi,
Volume 8, Issue 2 (June 2012)

This paper proposes a method for determining the price bidding strategies of market participants consisting of Generation Companies (GENCOs) and Distribution Companies (DISCOs) in a day-ahead electricity market, while taking into consideration the load forecast uncertainty and demand response programs. The proposed algorithm tries to find a Pareto optimal point for a risk neutral participant in the market. Because of the complexity of the problem a stochastic method is used. In the proposed method, two approaches are used simultaneously. First approach is Fuzzy Genetic Algorithm for finding the best bidding strategies of market players, and another one is Mont-Carlo Method that models the uncertainty of load in price determining algorithm. It is demonstrated that with considering transmission flow constraints in the problem, load uncertainty can considerably influences the profits of companies and so using the second part of the proposed algorithm will be useful in such situation. It is also illustrated when there are no transmission flow constraints, the effect of load uncertainty can be modeled without using a stochastic model. The algorithm is finally tested on an 8 bus system.
S. A. Mozdawar, A. Akbari Foroud, M. Amirahmadi,
Volume 18, Issue 1 (March 2022)

This paper scrutinizes the impact of different renewable energy sources (RES) development policies on competitiveness within multiple electricity markets (MEMs). Also, the variation in market power indices by increasing the integration of the markets undergoing symmetric and asymmetric RES development policies is investigated. To do so, several stochastic mixed-integer non-linear programming objective functions are used in the agent-based simulation framework to model the power plants’ behavior and markets. The case study shows in the low RES penetrated markets, one can say the more integration level of the markets, the lower potential of exercising market power. The reciprocal judgment is true for a high RES penetrated market. Also, large asymmetry in RES development between markets within MEMs may bring about market power problem for a high RES penetrated market. Unlike the asymmetric RES development policies, adopting homogeneous policies in RES development within MEMs reduces the market power potential in all markets and this potential decreases with the increase in the integration of the markets.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.