Search published articles


Showing 4 results for Aghamohammadi

M. R. Aghamohammadi,
Volume 4, Issue 3 (July 2008)
Abstract

This paper proposes a novel approach for generation scheduling using sensitivity

characteristic of a Security Analyzer Neural Network (SANN) for improving static security

of power system. In this paper, the potential overloading at the post contingency steadystate

associated with each line outage is proposed as a security index which is used for

evaluation and enhancement of system static security. A multilayer feed forward neural

network is trained as SANN for both evaluation and enhancement of system security. The

input of SANN is load/generation pattern. By using sensitivity characteristic of SANN,

sensitivity of security indices with respect to generation pattern is used as a guide line for

generation rescheduling aimed to enhance security. Economic characteristic of generation

pattern is also considered in the process of rescheduling to find an optimum generation

pattern satisfying both security and economic aspects of power system. One interesting

feature of the proposed approach is its ability for flexible handling of system security into

generation rescheduling and compromising with the economic feature with any degree of

coordination. By using SANN, several generation patterns with different level of security

and cost could be evaluated which constitute the Pareto solution of the multi-objective

problem. A compromised generation pattern could be found from Pareto solution with any

degree of coordination between security and cost. The effectiveness of the proposed

approach is studied on the IEEE 30 bus system with promising results.


M. Aghamohammadi, S. S. Hashemi, M. S. Ghazizadeh,
Volume 7, Issue 1 (March 2011)
Abstract

This paper presents a new approach for estimating and improving voltage stability margin from phase and magnitude profile of bus voltages using sensitivity analysis of Voltage Stability Assessment Neural Network (VSANN). Bus voltage profile contains useful information about system stability margin including the effect of load-generation, line outage and reactive power compensation so, it is adopted as input pattern for VSANN. In fact, VSANN establishes a functionality for VSM with respect to voltage profile. Sensitivity analysis of VSM with respect to voltage profile and reactive power compensation extracted from information stored in the weighting factor of VSANN, is the most dominant feature of the proposed approach. Sensitivity of VSM helps one to select most effective buses for reactive power compensation aimed enhancing VSM. The proposed approach has been applied on IEEE 39-bus test system which demonstrated applicability of the proposed approach.
M. R. Aghamohammadi, S. Hashemi, M. S. Ghazizadeh,
Volume 7, Issue 2 (June 2011)
Abstract

Abstract: Voltage instability is a major threat for security of power systems. Preserving voltage security margin at a certain limit is a vital requirement for today’s power systems. Assessment of voltage security margin is a challenging task demanding sophisticated indices. In this paper, for the purpose of on line voltage security assessment a new index based on the correlation characteristic of network voltage profile is proposed. Voltage profile comprising all bus voltages contains the effect of network structure, load-generation patterns and reactive power compensation on the system behaviour and voltage security margin. Therefore, the proposed index is capable to clearly reveal the effect of system characteristics and events on the voltage security margin. The most attractive feature for this index is its fast and easy calculation from synchronously measured voltage profile without any need to system modelling and simulation and without any dependency on network size. At any instant of system operation by merely measuring network voltage profile and no further simulation calculation this index could be evaluated with respect to a specific reference profile. The results show that the behaviour of this index with respect to the change in system security is independent of the selected reference profile. The simplicity and easy calculation make this index very suitable for on line application. The proposed approach has been demonstrated on IEEE 39 bus test system with promising results showing its effectiveness and applicability.
Z. Rafiee, M. Rafiee, M. R. Aghamohammadi,
Volume 16, Issue 3 (September 2020)
Abstract

Improving transient voltage stability is one of the most important issues that must be provided by doubly fed induction generator (DFIG)-based wind farms (WFs) according to the grid code requirement. This paper proposes adjusted DC-link chopper based passive voltage compensator and modified transient voltage controller (MTVC) based active voltage compensator for improving transient voltage stability. MTVC is a controller-based approach, in which by following a voltage dip (VD) condition, the voltage stability for the WF can be improved. In this approach, a voltage dip index (VDI) is proposed to activate/deactivate the control strategy, in which, two threshold values are used. In the active mode, the active and reactive power are changed to decrease the rotor current and boost the PCC voltage, respectively. Based on the control strategy, in a faulty grid, DFIG not only will be able to smooth DC-link voltage fluctuations and reduces rotor overcurrents but also it will increase the voltage of point of common coupling (PCC). Therefore, it improves transient voltage stability. The simulation results show the effectiveness of the proposed strategy for improving voltage stability in the DFIG.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.