Search published articles

Showing 4 results for Type of Study: ICEMG2023

Reza Mirzahosseini, Elham Rahimi Namaghi,
Volume 19, Issue 4 (12-2023)

In this paper, a new topology of fractional slot concentrated winding double rotor axial flux permanent magnet synchronous motor (FSCW-DRAFPMSM) is introduced. The desired structure consists of a nonslotted stator core and two rotor discs. The pole number of the two rotors is different and these two rotors rotate at different speeds in opposite directions. A sample motor with an output power of 200 Watts is designed with the proposed structure. The two rotors of this sample motor rotate with speeds of 1200 and 857 rpm. The Finite Element Method (FEM) is employed to evaluate the performance of the proposed structure. Some performance characteristics of the case study machine, such as the Back EMF, input power, and electromagnetic torques of two rotors are presented to confirm the correctness of the operation of the proposed structure. In addition, the shifting technique is used to improve the Back EMF waveform of the machine. An analytical formula is proposed for calculating the fundamental component of the Back EMF waveform. The accuracy of the formula is approved by FEM.
Milad Babalou, Hossein Torkaman, Edris Pouresmaeil, Nazanin Pourmoradi,
Volume 20, Issue 0 (6-2024)

In this paper, a dual-active bridge converter based on the utilization of two transformers is presented. The principles of operation, switching strategy, and transmission power characteristics of the proposed converter under normal operation are discussed, comprehensively. Moreover, the RMS current of two transformers with different values of inductances of the inductors that are in series with the transformers; is discussed. The operation of the proposed dual active bridge (DAB) converter under the open-circuit failure of transformers is studied. In addition, the loss distribution of the proposed converter in different powers is investigated. The proposed dual-transformer-based dual-active bridge converter is compared with the presented converters. Finally, the proposed converter with a low-voltage side (VL= 300 V), the switching frequency of power MOSFETs (fs= 50 kHz), and an accurate model of the electric battery at a high-voltage side (VH= 450 V) are simulated to verify the way of charging and discharging the electrical battery with the proposed converter under normal and open-circuit fault of transformers.
Hossein Azizi Moghaddam, Arman Farhadi,
Volume 20, Issue 1 (3-2024)

Dynamometers are equipment that has been widely used in the field of electric machines test benches. A dynamometer system has the ability to create intricate and unpredictable behaviours of mechanical loads according to a programmed manner. Extensive research into the characteristics of loads found in industrial settings has shown that non-linear and complex phenomena, including misalignment, mechanical friction, and others, are unavoidable in industrial drive systems. To assess the performance of motor and drive systems in industrial drives when subjected to these non-linear and complex loads, a fast and precise dynamic drive system must track high-frequency torque signals with precision. The suggested dynamometer, serving as an instrumental device, has the ability to emulate a wide torque response across various frequencies during both transient and steady-state conditions for the machine under test. Simulations and experimental results confirm the dynamometer's wide-ranging dynamic response, enabling the emulation of different linear and non-linear loads.
Ali Zarghani, Pedram Dehgosha, Hossein Torkaman, Aghil Ghaheri,
Volume 20, Issue 1 (3-2024)

Losses in electric machines produce heat and cause an efficiency drop. As a consequence of heat production, temperature rise will occur which imposes severe problems. Due to the dependence of electrical and mechanical performance on temperature, conducting thermal analysis for a special electric machine that has a compact configuration with poor heat dissipation capability is crucial. This paper aims to carry out the thermal analysis of an axial-field flux-switching permanent magnet (AFFSPM) machine for electric vehicle application. To fulfill this purpose, three-dimensional (3D) finite element analysis is performed to accurately derive electromagnetic losses in active components. Meanwhile, copper losses are calculated by analytic correlation in maximum allowable temperature. To improve thermal performance, cooling blades are inserted on the frame of AFFSPM, and 3D computational fluid dynamics (CFD) is developed to investigate thermal analysis. The effect of different housing materials, the external heat transfer coefficient, and various operating points on the components' temperature has been reported. Finally, 3-D FEA is used to conduct heat flow path and heat generation density.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.