M. Ghayeni, R. Ghazi,
Volume 6, Issue 2 (6-2010)
Abstract
This paper presents a method to allocate the transmission network costs to users
based on nodal pricing approach by regulating the nodal prices from the marginal point to
the new point. Transmission nodal pricing based on marginal prices is not able to produce
enough revenue to recover the total transmission network costs. However, according to the
previous studies in this context, this method recovers only a portion of transmission costs.
To solve this problem, in this paper a method is presented in which by considering the
direction and amount of injected power in each node the marginal price is regulated to the
new price, in such a way as the nodal pricing can recover the total transmission network
costs. Also the proposed method is able to control the cost splitting between loads and
generators in accordance with the pre-specified ratio. The proposed method is implemented
on both IEEE 24-bus and 118-bus test systems and the obtained results are reported.
M. Ghayeni, R. Ghazi,
Volume 6, Issue 4 (12-2010)
Abstract
This paper proposes an algorithm for transmission cost allocation (TCA) in a large power system based on nodal pricing approach using the multi-area scheme. The nodal pricing approach is introduced to allocate the transmission costs by the control of nodal prices in a single area network. As the number of equations is dependent on the number of buses and generators, this method will be very time consuming for large power systems. To solve this problem, the present paper proposes a new algorithm based on multi-area approach for regulating the nodal prices, so that the simulation time is greatly reduced and therefore the TCA problem with nodal pricing approach will be applicable for large power systems. In addition, in this method the transmission costs are allocated to users more equitable. Since the higher transmission costs in an area having a higher reliability are paid only by users of that area in contrast with the single area method, in which these costs are allocated to all users regardless of their locations. The proposed method is implemented on the IEEE 118 bus test system which comprises three areas. Results show that with application of multi-area approach, the simulation time is greatly reduced and the transmission costs are also allocated to users with less variation in new nodal prices with respect to the single area approach.
S. Salarkheili, A. Akbari Foroud, R. Keypour,
Volume 7, Issue 4 (12-2011)
Abstract
In this paper capacity withholding in an oligopolistic electricity market that all Generation Companies (GenCos) bid in a Cournot model is analyzed and the capacity withheld index, the capacity distortion index and the price distortion index are obtained and formulated. Then a new index, Distortion-Withheld Index (DWI), is proposed in order to measure the potential ability of market for capacity withholding. In these indices the impact of demand elasticity on capacity withholding is considered and it is shown that demand elasticity plays an important role for capacity withholding and market power mitigation. Due to the significant role of forward contracts for market power mitigation and risk hedging in power markets, the impacts of these contracts on capacity withholding are considered. The effects of GenCos’ strategic forward contracts on capacity withholding are also discussed. Moreover, the relationship between capacity withholding of GenCos and market price distortion is acquired. A two-settlement market including a forward market and a spot market is used to describe GenCos’ strategic forward contracting and spot market competition.
M. Farshad, J. Sadeh, H. Rajabi Mashhadi,
Volume 9, Issue 2 (6-2013)
Abstract
This paper presents a novel solution method for joint energy and Spinning Reserve (SR) dispatch problem. In systems in which the Lost Opportunity Cost (LOC) should be paid to generators, if the LOC is not considered in the dispatch problem, the results may differ from the truly optimum solution. Since the LOC is a non-differentiable function, including it in the formulation makes the problem solving process to be time-consuming and improper for real time applications. Here, the joint energy and SR dispatch problem considering the LOC in the objective function is reformulated as a Linear Programming (LP) problem which its solving process is computationally efficient. Also, with reliance on the performance of LP problem solving process, an iterative algorithm is proposed to overcome the self-referential difficulty arising from dependence of the LOC on the final solution. The IEEE 30-bus test system is used to examine the proposed solution method.
S. Babaeinejad Sarookolaee, A. Akbari- Foroud,
Volume 9, Issue 2 (6-2013)
Abstract
This study focuses on one of the most effective type of capacity markets named Capacity Subscription (CS) market which is predicted to be widely used in the upcoming smart grids. Despite variant researches done about the mechanism and structure of capacity markets, their performances have been rarely tested in the presence of network constraints. Considering this deficiency, we tried to propose a new method to determine capacity prices in the network considering the transmission line flow limitations named Local capacity Prices (LP). This method is quite new and has not been tried before in any other similar researches. The philosophy of the proposed method is to determine capacity prices considering each consumer share of total peak demand. The first advantage of LP is that the consumers who benefit from the transmission facilities and are the responsible for transmission congestions, pay higher capacity prices than those whom their needed electricity is prepared locally. The second advantage of LP is that consumers connected to the same bus do not have to pay same capacity price due to their different shares of total peak demand. For more clarification, two other different methods named Branches Flow limit as a Global Limit (BFGL) and Locational Capacity Prices (LCP) are proposed and compared to the LP method in order to show LP method efficiency. The numerical results obtained from case studies show that the LP method follows more justice market procedure which results in more efficient capacity prices in comparison to BFGL and LCP methods.
A. Soofiabadi, A. Akbari Foroud,
Volume 10, Issue 1 (3-2014)
Abstract
This paper proposes an index for nodal market power detection in power market under locational marginal pricing (LMP). This index is an ex-ante technique to detect the market power. More precisely, this criterion detects the potential of exercising market power regardless of detecting the actual market power. Also it is obvious that pricing and market clearing method affect the potential of exercising market power. Different potential of market power exists in different pricing methods. This index has been analyzed under LMP method which seems to be a desirable environment to exercise market power. In LMP method by load growth, in some determined load levels which is called Critical Load Levels (CLLs), locational marginal prices have step change. This step change in locational marginal prices causes step change in revenue and benefit of Gencos. So it is significant to detect the behavior of Gencos in the CLLs. The proposed criterion has been tested on constant system load and CLLs of system.
A. R. Soofiabadi, Dr. A. Akbari Foroud,
Volume 11, Issue 2 (6-2015)
Abstract
This paper develops a method for nodal pricing and market clearing mechanism considering reliability of the system. The effects of components reliability on electricity price, market participants’ profit and system social welfare is considered. This paper considers reliability both for evaluation of market participant’s optimality as well as for fair pricing and market clearing mechanism. To achieve fair pricing, nodal price has been obtained through a two stage optimization problem and to achieve fair market clearing mechanism, comprehensive criteria has been introduced for optimality evaluation of market participant. Social welfare of the system and system efficiency are increased under proposed modified nodal pricing method.