Search published articles



Mahdi Sedghi, Masoud Aliakbar-Golkar,
Volume 5, Issue 2 (6-2009)
Abstract

Optimal expansion of medium-voltage power networks is a common issue in electrical distribution planning. Minimizing total cost of the objective function with technical constraints and reliability limits, make it a combinatorial problem which should be solved by optimization algorithms. This paper presents a new hybrid simulated annealing and tabu search algorithm for distribution network expansion problem. Proposed hybrid algorithm is based on tabu search and an auxiliary simulated annealing algorithm controls the tabu list of the main algorithm. Also, another auxiliary simulated annealing based algorithm has been added to local searches of the main algorithm to make it more efficient. The numerical results show that the method is very accurate and fast comparing with the other algorithms.
M. Padma Lalitha, V.c Veera Reddy, N. Sivarami Reddy,
Volume 6, Issue 4 (12-2010)
Abstract

Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss, etc. This paper presents a new methodology using Fuzzy and Artificial Bee Colony algorithm(ABC) for the placement of Distributed Generators(DG) in the radial distribution systems to reduce the real power losses and to improve the voltage profile. A two-stage methodology is used for the optimal DG placement . In the first stage, Fuzzy is used to find the optimal DG locations and in the second stage, ABC algorithm is used to find the size of the DGs corresponding to maximum loss reduction. The ABC algorithm is a new population based meta heuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The proposed method is tested on standard IEEE 33 bus test system and the results are presented and compared with different approaches available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.
M. Sharma, K. P. Vittal,
Volume 6, Issue 4 (12-2010)
Abstract

The recent trends in electrical power distribution system operation and management are aimed at improving system conditions in order to render good service to the customer. The reforms in distribution sector have given major scope for employment of distributed generation (DG) resources which will boost the system performance. This paper proposes a heuristic technique for allocation of distribution generation source in a distribution system. The allocation is determined based on overall improvement in network performance parameters like reduction in system losses, improvement in voltage stability, improvement in voltage profile. The proposed Network Performance Enhancement Index (NPEI) along with the heuristic rules facilitate determination of feasible location and corresponding capacity of DG source. The developed approach is tested with different test systems to ascertain its effectiveness.
J. Sadeh, E. Kamyab,
Volume 8, Issue 4 (12-2012)
Abstract

Islanded operation of distributed generators is a problem that can take place when they are connected to a distribution system. In this paper an islanding detection method is presented for inverter based distributed generation (DG) using under/over voltage relay. The method is an adaptive one and is based on the change of DG active power reference (Pref) in inverter control interface. The active power reference has a fixed value in normal condition, whereas, if the point of common coupling (PCC) voltage changes, Pref has determined as a linear function of voltage. The slope of Pref is dependent to the load active power (Pload) and should be changed if Pload changes. The non-detection zone (NDZ) of the proposed method is dependent on the accuracy of the voltage measurement equipment if changing of the PCC voltage is sensed, then, islanding will be detected if it is occurred. Also it does not have any negative effects on the distribution system in normal conditions. Moreover, the proposed technique can be applied when two-DG is in the island. The proposed method is evaluated according to the requirements of the IEEE 1547 and UL 1741 standards, using PSCAD/EMTDC software.
M. Bakhshi, R. Noroozian, G. Gharehpetian,
Volume 9, Issue 2 (6-2013)
Abstract

Identification of intentional and unintentional islanding situations of dispersed generators (DGs) is one of the most important protection concerns in power systems. Considering safety and reliability problems of distribution networks, an exact diagnosis index is required to discriminate the loss of the main network from the existing parallel operation. Hence, this paper introduces a new islanding detection method for synchronous machine–based DGs. This method uses the average value of the generator frequency to calculate a new detection index. The proposed method is an effective supplement of the over/under frequency protection (OFP/UFP) system. The analytical equations and simulation results are used to assess the performance of the proposed method under various scenarios such as different types of faults, load changes and capacitor bank switching. To show the effectiveness of the proposed method, it is compared with the performance of both ROCOF and ROCOFOP methods.
J. Ghazanfari, M. Maghfoori Farsangi,
Volume 9, Issue 3 (9-2013)
Abstract

In this paper, a robust Maximum Power Point Tracking (MPPT) for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC) method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maximum Power Point (MPP) system and the results obtained are given. The simulation results confirm the effectiveness of the proposed method in the presence of load variations and environment changes for different types of DC-DC converter topologies.
A. Zakariazadeh, Sh. Jadid,
Volume 10, Issue 2 (6-2014)
Abstract

Microgrid (MG) is one of the important blocks in the future smart distribution systems. The scheduling pattern of MGs affects distribution system operation. Also, the optimal scheduling of MGs will be result in reliable and economical operation of distribution system. In this paper, an operational planning model of a MG which considers multiple demand response (DR) programs is proposed. In the proposed approach, all types of loads can participate in demand response programs which will be considered in either energy or reserve scheduling. Also, the renewable distributed generation uncertainty is covered by reserve prepared by both DGs and loads. The novelty of this paper is the demand side participation in energy and reserve scheduling, simultaneously. Furthermore the energy and reserve scheduling is proposed for day-ahead and real-time. The proposed model was tested on a typical MG system in connected mode and the results show that running demand response programs will reduce total operation cost of MG and cause more efficient use of resources.
F. Namdari, M. Parvizi, E. Rokrok,
Volume 12, Issue 1 (3-2016)
Abstract

Integration of distributed generations (DGs) in power grids is expected to play an essential role in the infrastructure and market of electrical power systems. Microgrids are small energy systems, capable of balancing captive supply and requesting resources to retain stable service within a specific boundary. Microgrids can operate in grid-connected or islanding modes. Effective islanding detection methods are essential for realizing the optimal operation of microgrids. In this paper, a new passive islanding detection method is presented according to the change rate of DG’s voltage over active power index. This technique has been applied on inverter-based and synchronous-based microgrids. The efficiency of the proposed method is verified through a comprehensive set of simulation studies carried out in Matlab/Simulink.


F. Amini, R. Kazemzadeh,
Volume 13, Issue 1 (3-2017)
Abstract

Development of distributed generations’ technology, trends in the use of these sources to improve some of the problems such as high losses, low reliability, low power quality and high costs in distributed networks. Choose the correct location to install and proper capacity of these sources, such as important things that must be considered in their use. Since distribution networks are actually unbalanced and asymmetric consumption loads are different, so in this paper with optimal placement and sizing of distributed generation sources that dependent on the load model and type of load connection and the uncertainties which caused by the generated power of wind turbines and solar panels, the positive effects of these sources have been examined on unbalanced distribution network. Hence with linear three-phase unbalanced load flow method and IPSO algorithm, allocation of distributed generation sources in IEEE standard of 37 bus unbalanced network have been done. Obtained results show improvement of voltage profile in each phase and reduction of network power losses and buses’ voltage unbalance factor. 


F. Nazari, A. Zangeneh, A. Shayegan-Rad,
Volume 13, Issue 1 (3-2017)
Abstract

By increasing the use of distributed generation (DG) in the distribution network operation, an entity called virtual power plant (VPP) has been introduced to control, dispatch and aggregate the generation of DGs, enabling them to participate either in the electricity market or the distribution network operation. The participation of VPPs in the electricity market has made challenges to fairly allocate payments and benefits between VPPs and distribution network operator (DNO). This paper presents a bilevel scheduling approach to model the energy transaction between VPPs and DNO.  The upper level corresponds to the decision making of VPPs which bid their long- term contract prices so that their own profits are maximized and the lower level represents the DNO decision making to supply electricity demand of the network by minimizing its overall cost. The proposed bilevel scheduling approach is transformed to a single level optimizing problem using its Karush-Kuhn-Tucker (KKT) optimality conditions. Several scenarios are applied to scrutinize the effectiveness and usefulness of the proposed model. 


E. Alizadeh, A. Motie Birjandi, M. Hamzeh,
Volume 13, Issue 4 (12-2017)
Abstract

This paper proposes a decentralized control technique to minimize the total operation cost of a DC microgrid in both grid-connected and islanded modes. In this study, a cost-based droop control scheme based on the hourly bids of all participant distributed generators (DGs) and the hourly energy price of the utility is presented. An economic power sharing technique among various types of DG units is adopted to appropriately minimize the daily total operation cost of DC microgrid without a microgrid central controller. The DC microgrid may include non-dispatchable DG units (such as photovoltaic systems) and dispatchable generation units. Unlike other energy management techniques, the proposed method suffers neither from forecasting errors for both load demand and renewable energy power prediction modules, nor from complicated optimization techniques. In the proposed method, all DGs and the utility are classified in a sorting rule based on their hourly bids and open market price, and then the droop parameters are determined. The simulation results are presented to verify the effectiveness of the proposed method using MATLAB/SIMULINK software. The results show that the proposed strategy is able to be implemented in various operation conditions of DC microgrid with resistance to uncertainties.

S. Arefi Ardakani, A. Badri,
Volume 13, Issue 4 (12-2017)
Abstract

Today due to increasing and evolving of electrical grids, the optimal and profitable energy production is among producers' major concerns. Thus, conventional ways of production and trading energy are being replaced by modern economical procedures. In addition, distributed energy resources (DERs) in form of renewable and conventional resources as well as responsive loads play an important role in this issue. The mutual problem of DERs in joining power market is their rather small production compared to other units and intermittency of the corresponding resources. Forming coalition is an effective way to overcome DER difficulties for participating in power market. In this paper the problem of optimal bidding strategy of DERs integrated as a virtual power plant is investigated. Based on the proposed method, cooperative game is employed to obtain optimal DER outputs and the results are compared with individual non-cooperative bidding model. In order to mitigate the intermittent nature of renewable energies, existence of electric vehicles (EVs) as energy storage facilities in the proposed coalition is investigated. Due to the associated uncertainties regarding EVs and DERs, a stochastic optimization model is used. Finally, Shapley value method is employed to obtain corresponding allocated profits. Results show the eminence of forming coalition in terms of acquiring payoffs and optimal contributions.

S. Dolatabadi, S. Tohidi, S. Ghasemzadeh,
Volume 14, Issue 4 (12-2018)
Abstract

In this paper, a new active method based on traveling wave theory for islanding detection is presented. A standard power grid that combines a distributed generation source and local loads is used to test the proposed method. Simulations are carried out in MATLAB/Simulink and EMTP/rv which demonstrate fast response and zero non-detection zone (NDZ) of the method along with low perturbation.

P. Asgharian, R. Noroozian,
Volume 15, Issue 1 (3-2019)
Abstract

Microturbine generation system is one of the most promising and a fast growing distributed generation sources. It is used in various applications thanks to high efficiency, quick start and high reliability. Combination of the microturbine and storage system (e.g. battery bank) is desirable selection to satisfy the load requirements under all conditions and hence the battery bank can play an important role in restoring balance between source and demand. In this paper, modeling of the microturbine with battery energy storage system is presented to supply sensitive loads. Appropriate power exchange between battery and the microturbine is an essential issue so, a new control method is proposed for battery energy storage based on instantaneous value of DC-link voltage. In this new strategy, DC-link voltage as well as battery parameters (current and voltage) are used in order to produce desirable DC-DC switching. A control scheme based on voltage, current and frequency measurement is presented for the corresponding inverter. Simulations are carried out in MATLAB/Simulink software and the results show that storage along with proper control improves system reliability to supply sensitive load. The proposed configuration can be used as a remote power, emergency power and also in micro-grid.



Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.