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1. Introduction

Images are often corrupted by additive noise when they
are being captured and transmitted. The main aim of an
image denoising algorithm is to reduce the noise level
while preserving the image features. In recent years, these
algorithms have become increasingly important to foun-
dational research and engineering applications.
In denoising, well known spatial filters like wiener filter
[1] and bilateral filter [2-3] not only loss the data and re-
duce noise, but also blur the edge and texture [4]. The
global purpose of denoising is to supress the noise ele-
ments and to preserve the main image features as much
as possible. Recently, many denoising techniques have
been introduced. 
VisuShrink was proposed by Donoho [5]. A threshold
level is determined, which is related to the standard devi-
ation of the noise. VisuShrink is very simple but smooths
the image. The reason is related to the threshold, which is
determined from the constraint that with high probability,
the estimate should be at least as smooth as the signal.
Hence, the threshold would be high and eliminates the de-
tails with noise. So, the decision on the threshold does not
set well to the edge information in the image.

SureShrink [6-7] is another thresholding procedure where
the wavelet coefficients are refined according to the level
decomposition. In a specified level, with valuable infor-
mation, a level of threshold that minimizes Stein’s unbi-
ased risk estimate (SURE) is selected [8]. SureShrink is
considered for elimination of AWGN noise in wavelet-
space where a threshold based on SURE is chosen for de-
noising. SureShrink has yielded good image denoising
performance and comes close to the true minimum MSE
of the optimal soft-threshold estimator [9]. SUREShrink
can preserve edges better than VisuShrink. 
BayesShrink was introduced by Chang, Yu and Vetterli
[10]. The main aim of this shrinkage is to minimize the
Bayesian risk formula. This method employs soft thresh-
olding and varies with subband-decomposition. Like the
SureShrink method, BayesShrink is adapted with smooth-
ing coefficients. This procedure produces vanished out-
puts in homogeneous areas. However, important features
like edges and textures are vanished.
OracleShrink and OracleThresh [10] are two thresholding
procedures, which used in the image denoising issue.
These tools are applied with the assumption of known
wavelet coefficients of original image. 
Sendur et al. [11-12] introduced another method, called
BiShrink, which is according to the non-Gaussian bivari-
ate distributions to model interscale dependencies. In this
method, a nonlinear bivariate shrinkage function employ-
ing the maximum a posteriori (MAP) estimator is used.
Experimental results in [11] show that BiShrink is better
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than BayeShrink. However, produces artifacts in the de-
noised image.
Pizurica et al. [13] proposed ProbShrink, which is driven
by the estimation of the probability that a given coefficient
contains significant information, which is called “signal
of interest”.  ProbShrink disadvantage is that smallest co-
efficients are heavily shrunk towards zero while the
largest ones tend to remain unchanged.
Hall et al. and Cai proposed thresholding rules based on
local coefficients [14-16]. In these methods, authors con-
sidered coefficients in groups not individual. Hence, de-
tails and edges preserve. The window size varies
according to the specified subband. This idea is promising
but the results in image denoising issue can be improved.
Recently, various approaches to denoising images have
been introduced such as feedback framework [17], block
matching [18], spatio-temporal filtering [19], hidden
Markov model [20] and anisotropic diffusion method
[21].
NeighShrink was introduced by Stein [22]. This shrinkage
strategy is more powerful than other denoising methods
such as soft and hard thresholding. Traditional
NeighShrink is not sensitive to noise levels and cannot
preserve texture information. In this paper, we propose a
modified Neighbor Shrinkage algorithm than can preserve
image features. Some tune parameters are added and eval-
uated empirically over 100 test images. A close form of
parameters is presented in the Lagrange polynomial. A de-
noising algorithm based on Real Double-Density Dual-
Tree Wavelet Transforms (REALDDDT) and modified
NeighSURE Shrink is given. Various conventional shrink-
age denoising techniques such as OracleShrink,
BayesShrink, BiShrink, ProbShrink and SURE Bivariate
Shrink have been used for comparison purposes. In order
to show the effectiveness of proposed method over tradi-
tional NeighShrink, commonly used performance index
PSNR has been used and to evaluate edge preservation,
SSIM has been used. Our experimental results prove that
this algorithm can maintain high-frequency details in ho-
mogenous areas where the gray level does not signifi-
cantly vary.
The outline of our paper is as follows: Section 2 gives a
brief introduction of real dual density dual-tree wavelet,
Stein’s Unbiased Risk Estimate (SURE) and NeighShrink.
In section 3, we developed an improved NeighShrink
method and suggest an algorithm based on double-density
dual-tree Discrete Wavelet Transform and SURE to solve
image processing problems. Section 4 reports the visual,
qualitative and quantitative results of the proposed and
existing methods supported by the peak-signal-to-noise-
ratio (PSNR) with a brief explanation of results. Finally,
the concluding remarks are given in section 5.

2. Basic Theory

2. 1. Double-Density Dual-Tree Discrete Wavelet

Transform

Discrete Wavelet Transform (DWT) is a well-known pro-
cedure to decompose images. The DWT has two draw-
backs. 1) Lack of shift invariance. 2) Lack of directional
selectivity: as the DWT filters are real and separable the
DWT cannot distinguish between the opposing diagonal
directions [23]. double-density DWT which introduced
after Discrete Wavelet Transform, has these advantages
[24]. (1) It uses one scaling function and two distinct
wavelets which are designed to be offset from one another
by one half. (2) The double density DWT is over complete
by a factor of two. Kingsbury proposed a novel specific
computational frame, the dual-tree complex wavelet
transform [25], which has the shift invariant properties.
Combining the double-density DWT and dual-tree DWT,
the double-density dual-tree DWT structure will be ob-
tained.

2. 2. NeighShrink and SURE Estimator

Assume be a summation of wavelet coefficients wkl
in the window Qij. The size of window L could be a pos-
itive odd number. For example, 3×3, 5×5 and so on. The
coefficients are shrunk as 

(1)

Where is the new coefficient from applying shrinkage
factor qij to wavelet coefficient wij. The shrinkage factor
is represented as [22]

(2)

Where λ is universal threshold. “+” in this formula means
that the positive value remains, and negative one changes
to zero. Assume the coefficients be arranged in 1-D vector
as ws={wn:n=1, …, Ns}. So, the expected loss could be
calculated as [22]

(3)

Where g(ws) is identified as

(4)

For nth wavelet coefficient wn, we have
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(5)

(6)

(7)

And finally, Stein’s Unbiased Risk Estimate (SURE) is
calculated as

(8)

3. Proposed Method 

NeighShrink has the following problem: In Eq (2), sum-
mation of wavelet coefficients has important role in
shrinkage factor qij. This factor determines the details of
the denoised image. If we eliminate more coefficients (i.e.
more qij changes to zero), details would be lost and the
image would be rough. If fewer coefficients change to
zero, the noise remains in the output, and the process
would be less effective. This resembles to hard threshold-
ing and can result in degradation of quality. So, there is a
compromise between details destruction and noise re-
moval. The main drawback of NeighShrink is neglect of
the power of noise in maintaining details. In low noise
level condition, the wavelet coefficient wij should has less
change. In other words, should be low enough which
shrinkage factor wins against zero in Eq (2). In high noise
level mode, noise is more dominant and more coefficients
should be zero, and the summation of wavelet coefficients
must be reinforced. This means that should be in-
creased with increasing noise. Figure 1 shows the effect
of NeighShrink on wavelet coefficients of “Lena” image
in 3 level decomposition in noise level 30. 
From given results, it is clear that a large amount of coef-
ficients have been shrunk to zero, which are not com-
pletely noisy. In higher noise levels, more coefficients are
changed to zero and obtained results are worse than this.
This means that we miss information, especially in ho-
mogenous areas. So, traditional Neigh Shrink cannot
maintain high-frequency edge and texture details in
smooth areas. To solve the above problem, we propose a
flexible structure to boost image denoising performance.
We modify the NeighShrink method and improve the al-

gorithm as follows: We add some tuning parameters to Eq
1 and 2 to improve the above condition and control the
degree of shrinkage. A new definition of is suggested
as:

(14)

where β is a positive number bigger than unit and DC is
a offset number which changes above 1.5. Another param-
eter is α which is added to Eq (1) as

(15)

In this equation, α is a tuning parameter which is set above
unit. To obtained α, β and DC, the SIPI database over 100
images has been studied [26]. We found that these param-
eters are related to noise levels. For test images, tuning
parameters have been calculated via genetic algorithm in
every noise condition from σ=10 to σ=70 which have best
PSNRs over all. The results have been similar with low
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15.6242 18.9198 -8.0833 -1.5502 2.4775 

19.615 18.5553 -7.3458 -1.0936 3.284 

22.5737 16.4145 -7.8486 -1.3815 2.0332 
 

12.2475 4.2375 1.6659 2.4298 -1.9776 

9.5783 6.8333 -2.9873 1.0597 8.4056 

9.4524 5.2367 1.8997 -4.3443 7.5899 

13.7211 5.6629 -1.9415 -7.034 4.9081 

23.208 8.683 -6.8422 -4.2512 4.9496 
 

 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

11.3146 0 0 0 0 

21.8484 0 0 0 0 
 

 

a) Original wavelet coefficients

b) Noisy wavelet coefficients

c) Wavelet coefficients after applying traditional NeighShrink
Fig. 1. Restore “Lena” image by traditional NeighShrink
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variance. Table 1 shows the average of obtained parame-
ters with the so-called database.
To have a closed form, we estimate parameters with in-
terpolating polynomials in the Lagrange form. Given n
points in the plane, (xk, yk), k = 1, ..., n, with distinct xk’s,
there is a unique polynomial in x of degree less than n
whose graph passes through the points.

(16)

A hexic polynomial is assumed for each parameter as Eq
(17). 

(17)

Table 2 shows calculated Lagrange coefficients of param-
eters α, β and DC.

Figure 2 illustrates Pα, Pβ and PDC as a function of noise
level.
We propose a denoising algorithm based on REALDDDT
and SURE Shrink to implement modified NeighShrink.
Figure 3 shows this procedure.
In our algorithm, real dual density dual-tree wavelet de-
composition is done on the corrupted image. Level of de-
composition is set to 3. MATLAB built-in filters
'FSdoubledualfilt' and 'doubledualfilt' are assumed for first
stage and remain stages decomposition respectively. The
noisy image is decomposed to low and high subbands.
Then, the low frequency band is decomposed to the new
low and high subbands again, and this procedure contin-
ues to reach desire level (i.e. 3). After that, the noise vari-
ance is estimated by [6, 27]

noise level alpha beta DC 
10 1.02 2.7 1.5 
20 1.06 2.1 3.5 
30 1.08 1.7 4.3 
40 1.20 1.6 5.5 
50 1.35 1.3 6 
60 1.6 1.2 7.4 
70 1.81 1.15 8.8 

 

Table 1. average results of tuning parameters in denoising of
standard images of SIPI database

param    
 -9.4444e-10 -4.0972e-09 -1.4722e-08 
 2.2583e-07 9.8542e-07 3.5417e-06 
 -2.1444e-05 -9.2951e-05 -3.3639e-04 
 0.0010 0.0043 0.0160 
 -0.0256 -0.1034 -0.4017 
 0.3105 1.1186 5.0658 
 -0.3600 -1.6500 -22 

 

 and  as a function of noise level. 

Table 2. alpha, beta and DC polynomial coefficients

 
a) 

 
b) 

Fig. 2. Polynomial of tune parameters versus noise level
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(18)

where ∈HH1 , is the first decomposition level. To obtain
best Threshold for each band a variable window 3×3 or
5×5 is considered and RISK is calculated according Eq
(8). The best window size and Threshold is selected which
minimize Eq (8). Then, tune parameters are set by Table

2 and Figure 2 and modified NeighShrink is applied to
each band (except low frequency subband). Finally, with
applying inverse REALDDDT, the restore image is
achieved. 

4. Results and Discussion

In this section, we present some numerical results for
Shrinkage image denoising, and consider the performance
of the proposed denoising method. Image denoising using
our shrinkage can separate noise from the actual image

 
Fig. 3. block diagram of proposed wavelet based image denoising using modified NeighSureShrink.
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without affecting the actual features of the image. The
proposed method is applied on a different set of gray-scale
images. For visual comparison, denoising results of
‘Lena’ and ‘Tire’ images are shown in Figure 4 and 5 re-
spectively.
The qualitative results indicate that the proposed method

effectively suppresses Gaussian noise better than Tradi-
tional NeighShrink without smoothing the important
image details, especially at higher noise levels.
The peak signal to noise ratio (PSNR) and Structural Sim-
ilarity Index (SSIM) [28] are used as a standard evaluation
of the results of denoising the images. SSIM indicates the

sigma Noisy image Traditional NeighShrink Proposed NeighShrink 

10 

 PSNR= 33.7243 dB PSNR= 35.1541 dB 

20 

 PSNR= 30.3071 dB PSNR= 31.3974 dB 

30 

 PSNR= 28.3288 dB PSNR= 29.3064 dB 
 

Fig. 4. “Lena” image, investigating the detailed feature preserving abilities of the proposed technique against traditional
NeighShrink.
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feature preserving the capability of the proposed method-
ology and PSNR value indicates the overall quality and
strength of the final denoised images. A performance
comparison of the proposed method and Traditional
NeighShrink in terms of PSNR and SSIM is shown in
Table 3. These methods were tested using different noise
levels of 10, 20 and 30.
As it can be seen, the PSNR and SSIM results of proposed
method outperform classical NeighShrink in all test im-
ages and noise levels. We have compared the proposed
method with three existing methods that are commonly
used in practice: OracleShrink [10], BayesShrink [10],
BiShrink [11], ProbShrink [13] and SURE Bivariate
Shrink (SUREbiShrink) [7]. We used the gray scale test
images “Boat”, “Peppers”, “Goldhill”, and “Bridge”. The
results of denoised image are compared with the different
methods for evaluating the performance by PSNR. The
comparison results are shown in Table 4 in detail. The best
result is highlighted in bold in every column. 
Experiments demonstrate that the new method produces
superior results compared to the methods based on the
other optimization and results comparable to other well-

sigma Noisy image Traditional 
NeighShrink 

Proposed 
NeighShrink 

10 

 
PSNR= 32.5154 dB 

 
PSNR= 34.7735 dB 

20 

 
PSNR= 29.3339 dB 

 
PSNR= 30.7800 dB 

30 

 
PSNR= 27.4909 dB 

 
PSNR= 28.9140 dB 

Fig. 5. “Tire” image, investigating the detailed feature preserving abilities of the proposed technique against traditional NeighShrink.

sigma Traditional 
NeighShrink 

Proposed 
NeighShrink 

PSNR SSIM PSNR SSIM 
Boat 512 × 512 

10 30.56 0.79 33.11 0.85 
20 27.81 0.71 29.61 0.76 
30 25.87 0.64 27.64 0.68 

Peppers 256 × 256 
10 31.55 0.87 33.44 0.89 
20 27.97 0.80 29.55 0.81 
30 25.75 0.76 27.42 0.77 

Goldhill 512 × 512 
10 30.89 0.79 33.44 0.85 
20 27.60 0.67 29.55 0.75 
30 24.19 0.49 26.71 0.61 

Bridge 256 × 256 
10 29.19 0.88 30.24 0.89 
20 24.52 0.54 26.32 0.75 
30 21.15 0.54 23.94 0.61 

Table 3. Comparative results of Traditional NeighShrink and
Proposed Shrink
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known denoising methods. To investigate the visual ef-
fectiveness of proposed approach and the other image de-
noising methods, Gaussian noise corrupted ‘Goldhill’
image is selected and compared with the original one in

Figure 6.
Compared to other methods, our method removes the
noise while producing fewer artifacts. We also compared
the proposed algorithm to the state of art denoising meth-
ods. The comparison was done using two images: Lena
and Barbara, having the same size, 512×512 pixels and
the results are presented in Table 5.
As shown in this Table, the results of the proposed method
are an improvement over other methods.

5. Conclusion

In this paper, a correct NeighShrink structure is proposed
to address the issue of image recovery from its noisy
counterpart. With considering drawback of traditional
NeighShrink, a new model is suggested, which can be
adopted with noise levels. Tune parameters are set by SIPI
database over 100 test images and formulated by La-
grange polynomial. We introduced a denoising algorithm
based on REALDDDT and applied our shrinkage with

sigma 5 10 20 30 
Boat 512 × 512 

OracleShrink 36.09 32.11 28.64 26.81 
BayesShrink 35.99 31.98 28.55 26.71 

BiShrink 36.18 32.46 29.08 27.20 
ProbShrink 36.20 32.53 29.11 27.22 

SUREbiShrink 36.70 32.90 29.47 27.63 
Proposed Shrink 36.78 33.11 29.61 27.64 

Peppers 256 × 256 
OracleShrink 36.38 32.06 28.03 25.84 
BayesShrink 35.83 31.49 27.85 25.73 

BiShrink 36.61 32.55 28.66 26.51 
ProbShrink 36.72 32.68 28.85 26.70 

SUREShrink 37.17 33.18 29.33 27.13 
Proposed Shrink 37.18 33.44 29.55 27.42 

Goldhill 512 × 512 
OracleShrink 35.99 31.97 28.75 27.18 
BayesShrink 35.93 31.94 28.69 27.13 

BiShrink 36.17 32.27 29.07 27.44 
ProbShrink 36.07 32.30 29.07 27.43 

SUREShrink 36.53 32.69 29.52 27.89 
Proposed Shrink 36.60 32.71 29.47 26.71 

Bridge 256 × 256 
OracleShrink 34.83 29.81 25.77 23.93 
BayesShrink 34.81 29.80 25.75 23.90 

BiShrink 34.94 29.93 25.81 23.97 
ProbShrink 34.59 29.61 25.74 23.97 

SUREShrink 35.06 30.22 26.36 24.56 
Proposed Shrink 35.38 30.24 26.32 23.94 

 

Experiments demonstrate that the new method produces superior results compared to 

Table 4. PSNR result comparison for various test images and different noise variance (σ) values with well-known techniques

Ref Lena Barbara 
 20 30 20 30 

[29] 30.77 29.04 28.55 27.38 
[30] 30.92 29.13 28.48 26.27 
[31] 28.25 25.7 26.81 24.49 
[32] 31.16 29.25 28.71 26.59 
[33] 30.61 28.73 26.57 26.36 
[34] 30.42 28.54 26.28 24.73 

Our work 31.40 29.31 29.56 26.92 

Table 5. comparative results between the state of art methods
and the proposed algorithm
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SURE estimator. Our experiments showed that the pro-
posed model can provide smoothness and preserve de-
tailed features in rich texture images at the same time, and
that its denoising performance is better than that of tradi-
tional techniques. This makes it an efficient method in nat-
ural image denoising applications.
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