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Dynamic Performance Prediction of Brushless Resolver 
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Abstract: A mathematical model based on d-q axis theory and dynamic performance 

characteristic of brushless resolvers is discussed in this paper. The impact of rotor 

eccentricity on the accuracy of position in precise applications is investigated. In particular, 

the model takes the stator currents of brushless resolver into account. The proposed model 

is used to compute the dynamic and steady state equivalent circuit of resolvers. Finally, 

simulation results are presented. The validity and usefulness of the proposed method are 

thoroughly verified with experiments. 
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1 Introduction

1
 

In advanced control methods such as vector control, 

rotor position and its speed must be known 

instantaneously. This can be achieved by using either an 

optical encoder or a resolver. In many applications, a 

resolver is the preferred choice because of its 

mechanical ruggedness, reliability and its ability to 

reject the common mode noise [1-4]. A resolver is an 

electromagnetic rotational transducer that detects 

angular displacements. It is easy to integrate with the 

motor system [5-6]. A typical brushless resolver is 

composed of two parts: Rotary Transformer and 

traditional resolver. There are two windings in the 

rotary transformer: primary (in stator) and secondary (in 

rotor) [7]. The rotary transformer transfers the exciting 

signal to rotating part and applies it to the primary 

winding of the resolver [8-9]. A traditional resolver has 

three windings, the first one is used as the excitation 

winding, and the other two, which are spaced 90
◦
 from 

each other, are the outputs. The induced voltages in the 

output windings contain rotor position information. 

Simplified dynamic equations of resolver were 

presented in [10], but the impact of eccentricity and 

stator currents were not considered, and sinusoidal 

steady state behavior was not studied. Another method 

in [11], based on magnetic field analysis, determines an 

optimal magnetic design, using 2-D FEM (two-

dimensional finite element method) and includes 

eccentricity, but its computing process is time 

consuming. 
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The objective of this paper is to present a mathematical 

model based on d-q axis theory to predict the dynamic 

and static behavior of a brushless resolver, considering 

eccentricity effect. This model gives us the dynamic and 

static equivalent circuit for resolvers. The advantages of 

the proposed approach are simplicity, accuracy and less 

computation time. 

The rest of this paper is organized as following: We 

present the resolver model in Section 2. The simulation 

model is explained in Section 3. Results of our 

experiments are discussed in Section 4, and conclusions 

are presented in Section 5. 

 

2 Resolver Model 

The resolver model proposed in this paper is based on d-

q axis theory. The following assumptions are considered 

in the analysis: 

a) Stator is assumed to have sinusoidal distributed 

polyphase windings. 

b) Rotor has a winding with sinusoidal supply. 

c) the model of resolver is obtained by assuming 

different resolver permeances in d-q axis. 

Fig. 1 shows the model of a resolver. Each stator 

winding flux consists of leakage flux and main flux, the 

latter flux links the rotor [12]. 

 

2.1 Dynamic Model 

The voltage equations in machine variables may be 

expressed as following: 
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Fig. 1 Resolver model [12]. 
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In the above equations the s subscript denotes variables 

and parameters associated with the stator circuits, and 

the r subscript denotes variables and parameters 

associated with the rotor circuit. Vas, Vbs are the stator 

voltages, Vr is the excitation signal of the resolver 

( )tcos(vV frr ψ+ω′= ). ias, ibs are the stator currents, ir is 

the rotor current rs is the resistance of stator circuit; Lℓs, 

Lms are, respectively, the leakage and magnetizing 

inductances of the stator winding; rr, Lrr are the 

resistance and inductance of rotor circuit, Lsr is the 

mutual inductance between the rotor and stator circuits, 

ωr is the rotor angular frequency and θr is electrical 

angular displacement. 

The stator variables are transferred to the rotor reference 

frame which eliminates the time-varying inductances in 

the voltage equations. Park’s equations are obtained by 

setting the speed of the stator frame equal to the rotor 

speed. 

The expressions for the flux linkages are: 
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and 
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then 
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By referring rotor variables to the stator windings, 

voltage equations will be: 
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In order to obtain the equivalent circuits, the flux 

linkages per second in equation (7) should be replaced 

by currents. Thus, the voltage-current equations are as 

following:  
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where: 
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and p is d/dt [12]. 

The electrical equivalent circuits of the resolver are 

presented in Fig. 2. 

The electromagnetic torque developed in the resolver is 

given by: 
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and the mechanical equation of resolver in per unit can 

be written as: 
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where H is inertia constant expressed in second, Tmech is 

load torque and Tdamp is fractional torque. 
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Fig. 2 Dynamic electrical equivalent circuits of the resolver. 

 

2.2 Steady State Model 

In steady state, the electrical angular velocity of the 

rotor is constant and equals to ωe. In this mode of 

operation the rotor windings do not experience any 

change of flux linkages [14]. Thus, with ωr set equal to 

ωe and the time rate of change of all flux linkages 

neglected, the steady state versions of (7) and (8) 

become: 
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Here the ωe to ωb ratio is again included to 

accommodate analysis when the operation frequency is 

other than rated. In the synchronously rotating reference 

frame and using uppercase letters to denote the constant 

steady state variables [14]: 

 

e
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e
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jFFF
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where, F is each electrical variable (voltage, current, 

flux linkage), 
as
F
~

is a phasor which represents a 

sinusoidal quantity; e

qs
F  and e

ds
F are real quantities 

representing the constant steady state variables of the 

synchronously rotating reference frame. Hence 
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Substituting (12) into (14) yields: 
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For symmetrical resolver, Xd = Xq and ωe= ωb. So (15) 

can be write as: 
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where 

 

mss XXX += �
 (17) 

 

Considering above equations, the steady state equivalent 

circuit of resolver is shown in Eig. 3. 

 

3 Simulation 

The state equations on the rotating d-q reference frame 

are introduced. MATLAB/Simulink software is used for 

simulation. 

Input, output and state variables are: 
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In generalized theory of electrical machinery, it is more 

convenient to use flux linkages as the state variables 

[14-15]. By this way, the differential operators change 

to integral operators. Using Equation (6) and (8), the 

flux-linkages equations could be obtained as follow: 
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where 
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And angular position, stator and rotor current can be 

calculated as: 
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It must be mentioned that the proposed model can 

consider the eccentricity in a resolver, by taking into 

account a difference between Ld and Lq [11,13]. 

Fig. 4 shows a block diagram which simulates the 

resolvers. 

 

4 Results and Discussions 

Fig. 5 shows the resolver and its experimental setup. 

This resolver is a pancake type, and its specifications 

are presented in Table 1. Parameters of resolver’s 

equivalent circuit, are given in Appendix I. This 

resolver was tested using a 100 watt, 12000 r.p.m. DC 

motor. 

The input resistance of R/D converter is very high and 

the current in the resolver’s stator coils, which apply to 

the R/D converter, is about micro ampere [16]. 

Fig. 6 shows resolver’s test conditions, nominal 

frequency (4 KHz) and 60 µA (5× conventional R/D 

Nominal Current) stator output currents.  

Table 2 shows the comparison of simulated and 

experimental output voltages. Results show good 

agreement between test and simulation voltages (about 

1.19% error). 
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Fig. 3 Steady state equivalent circuits of the resolver. 

 

 

Equations

(18), (22) 

and (24)

Equations

(19)-(21) 

and

(25), (26)

Equations

(10), (11) 

and (23) Generation

rr cos,sin θθθθθθθθ

×

×

×

×

dV

qV

d

b

r ψψψψ
ωωωω
ωωωω

q

b

r ψψψψ
ωωωω
ωωωω

fV′′′′

rsin θθθθ

rcosθθθθ

mechT

di

qi

qψψψψ

dψψψψ

rθθθθb

r

ωωωω
ωωωω

tcosv ff ωωωω

tcosv ff ωωωω
r

 

Fig. 4 Block diagram of resolver simulation. 
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(a) 

 

 

(b) 

Fig. 5 (a) Manufactured resolver, (b) Experimental setups of the test resolver. 

 

Table 1 Spesifications of tested resolver. 

7.07 V Input voltage (rms) 

3.53 V Output voltage (rms) 

10 min Maximum position error (min) 

8000-12000 rpm Maximum angular speed (rpm) 

S1 Duty Cycle 

2 Pole number 

 

 

For practical test a rotary tycope that connected to VF5-

HP20 CNC Machine (Computer Numeric Control) is 

used. Different rotary positions are produced by this 

tycope in [0,2π]
rad
. Resolver output and simulation 

result are compared in each of these positions (The 

resolver output is obtained from arctangent of output 

voltages ratio). 
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(a) 

 

 

 

(b) 

 

 

 

(c) 

Fig. 6 Output voltage of resolver versus time with 4 kHz excitation and 60 µA output currents, (a) simulated q-axis voltage, (b) 

simulated d-axis voltage, and (c) measured q-d axis voltages. 
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Table 2 Comparisons of calculated and measured results. 

Error 

(%) 

Output 

voltage 

(measured) 

Output 

voltage 

(simulated) 

Frequency 

(Hz) 

Output 

current 

(mA) 

1.19 5.06 5 4000 0.060 

 

Fig. 7 shows the comparisons of simulation results with 

resolver output position. This figure shows the 

maximum position error is ±3 Arcmin. 

In proposed model d-q axis inductances are different 

parametric variables. By using unequal values for Ld, Lq 

eccentricity of resolver will be modeled. 

Fig. 8 shows the eccentric resolver output voltages and 

angular position. Considering equations (2), (3); the 

resolver’s peak induced voltages aren’t influenced from 

eccentricity. Comparison of figures 6(a),(b) and 8(a),(b) 

confirms this effect. But the voltage phases are shifted. 

This phase shifting affects the detected angular position 

accuracy. Symmetric and eccentric resolver outputs are 

shown in Fig. 9. 

This figure shows rotor eccentricity about 0.175 mm 

(50% gap eccentricity) causes 18.1 Arcdeg. error in 

detected angular position. 

There are different methods for this error elimination 

that may be introduced in other papers. We have studied 

a new method based on resolver eigenvalues that will 

published soon.  

 

5 Conclusions 

In this paper, a brushless resolver was analyzed. Its 

dynamic and steady state equivalent circuits were 

presented for the first time. Proposed model is taking 

the eccentricity effect (By using different parametric 

inductance on q-d axis) and stator currents into account. 

Comparison between experimental and simulation 

results shows 1.19% error in output voltages, and ±3 

Arcmin error in detected angular position. These results 

demonstrated the accuracy of the proposed model for 

resolvers. Because of model’s ability in predicting 

eccentricity, the effect of 50% gap eccentricity was 

studied in stator voltages and detected angular position. 

 

 

 

Simulation

Resolver Output

High precision position sensor output 

 

Fig. 7 Comparison of calculated angular position with resolver output and tycope output. 

 
 

 

(a) 
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(b) 

 

 

 

(c) 

Fig. 8 Output voltage of eccentric resolver versus time with 4 KHz excitation, (a) d-axis voltage, (b) q-axis voltage, and (c) angular 

position. 

 

 

Fig. 9 Comparison of angular position in eccentric and symmetric resolver. 
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Appendix 

The test resolver equivalent circuit parameters are 

presented at Table I.  

 

Table I Equivalent circuit parameter of tested resolver. 

rs [Ω] 40 

Lls [H] 0.2×10
-3
 

Lm [H] 2.089×10
-3
 

r'r [Ω] 19 

L'lr [H] 0.2×10
-3
 

J [Kg.m
2
] 1.24×10

-4
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