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Abstract: This paper presents new adaptive filtering techniques used in speech 
enhancement system. Adaptive filtering schemes are subjected to different trade-offs 
regarding their steady-state misadjustment, speed of convergence, and tracking 
performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has 
better performance than the conventional LMS algorithm. Normalization of LMS leads 
to better performance of adaptive filter. Furthermore, convex combination of two 
adaptive filters improves its performance. In this paper, new convex combinational 
adaptive filtering methods in the framework of speech enhancement system are proposed. 
The proposed methods utilize the idea of normalization and fractional derivative, both 
in the design of different convex mixing strategies and their related component filters. 
To assess our proposed methods, simulation results of different LMS-based algorithms 
based on their convergence behavior (i.e., MSE plots) and different objective and 
subjective criteria are compared. The objective and subjective evaluations include 
examining the results of SNR improvement, PESQ test, and listening tests for dual-channel 
speech enhancement. The powerful aspects of proposed methods are their low complexity, 
as expected with all LMS-based methods, along with a high convergence rate. 
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1 Introduction1 
Speech communication devices are often used in 
environments with high levels of ambient noise such 
as cars and public places. The noise picked up by 
microphones of the device can significantly impair the 
quality of the transmitted speech signal. When the 
intelligibility of the transmitted speech is also 
impaired, the device cannot be used in the desired 
way. It is therefore sensible to include a noise 
reduction pre-processor in such devices. 

Numerous schemes have been proposed and 
implemented that perform speech enhancement under 
various constraints and/or assumptions and deal with 
different issues and applications [1]. 

Nowadays, adaptive algorithms represent one of 
the most frequently used computational tools for the 
processing of digital speech signals. As special case, 
dual-channel speech enhancement is one of the digital 
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signal processing subjects which uses adaptive 
filtering. Such systems incorporate two microphones, 
in which one of the microphones receives noisy 
speech signal and the other one takes noise signal [2]. 

There are many types of adaptive filters which 
employ different schemes to adjust filter weights. 
Among all adaptive algorithms, Widrow and Hoff’s 
Least-Mean-Squares (LMS) [3, 4] has probably 
become the most popular algorithm for its 
robustness, good tracking capabilities, and simplicity, 
both in terms of computational load and easiness of 
implementation. The main drawback of the "pure" 
LMS algorithm is that it is sensitive to the scaling of its 
input. To solve this problem, filter weights are 
normalized with the power of the input. This variant 
of the LMS algorithm is called Normalized Least-
Mean-Squares (NLMS) [5, 6]. 

The concept of fractional order operators has been 
investigated extensively in recent years in various 
signal processing theories and techniques [7-10]. 
Recently, a new method based on the modification of 
LMS-based adaptive filters has been proposed, which 
uses the fractional order derivative of Mean-Square 
Error (MSE) together with the first order derivative 
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[11]. In [12], a method based on Fractional Least-
Mean-Square (FLMS) algorithm is presented to work 
with nonlinear time series prediction. More recent 
applications of FLMS in signal processing methods 
include echo cancellation problem [13], and parameter 
estimation of Input Nonlinear Control Autoregressive 
(INCAR) models [14]. 

The design of many adaptive filters requires a 
trade-off between convergence speed and steady-state 
mean-squares error. A faster (or slower) convergence 
speed yields a larger (or smaller) steady-state Mean-
Square Deviation (MSD) and MSE. With this aspect, 
combinations of adaptive filters have recently 
attracted attention due to their ability to improve 
transient and steady-state performance of adaptive 
filters in stationary and non-stationary environments. So 
far, many structures of combination filters [15-16] 
have been proposed. One of interesting combinations 
of adaptive filters is the convex combination of two 
adaptive filters, also called component filters [16-18]. 
In convex combination, the output signals and the 
output errors of both filters are combined in such a 
way that the advantages of both component filters, 
namely, the rapid convergence of the fast filter and 
the reduced steady-state error from the slow filter, are 
retained. Recently, the convex combination of filtered-x 
algorithm has been employed in active noise control 
[19]. 

In order to improve further the performance of 
convex combinational filter, normalized convex 
combination of adaptive filters has been introduced. It 
is shown that the new update rule preserves the good 
features of the existing scheme and is more robust to 
changes in the filtering scenario [20]. 

In this paper, new convex combinational adaptive 
filtering techniques are proposed, in which 
normalization and fractional order features are 
employed, both in structures of component filters and 
in mixing strategy of the combinational scheme. 

This paper is organized as follows. Section 2 
describes the dual-channel speech enhancement system 
together with the techniques of LMS, NLMS, FLMS, 
and the structures of convex combination and 
normalized convex combination of adaptive filters. In 
Section 3, our proposed convex combinational 
adaptive methods are introduced. The different convex 
combinational schemes discussed include Convex 

Combination of Normalized Fractional Least-Mean-
Squares (CC-NFLMS), fractional convex combination 
and fractional normalized convex combination of 
component filters. Section 4 presents the experimental 
results and comparisons with traditional LMS-based 
adaptive filtering methods used in the context of 
speech enhancement. Concluding remarks are given in 
Section 5. 
 
2 Background 

2.1  Dual-channel Speech Enhancement 
Fig. 1 shows the block diagram for a general two-

channel enhancement system. The clean speech signal 
s(n) is assumed to be present in only one channel, 
which is then corrupted by the background noise b(n) 
to generate the noisy speech signal d(n). The second 
channel has the reference noise signal u(n) as input. 
The acoustic path transfer function between two 
sensors is given by P(z). The adaptive filter W(z) tries 
to estimate the acoustic path transfer function P(z). 
As a result, the filter output y (n) becomes an estimate 
of only noise present in d(n). The output of the 
adaptive filter is given by 

( ) ( ) ( )Hy n n n= w u                                                        (1) 

where w is the weight vector with length L. 
The output of the structure, e(n), will be an estimate 

of the clean speech signal s(n). In order to obtain the 
optimal adaptive filter coefficients, w, the following 
cost function is minimized: 

* 2( ) ( ) ( ) ( )J n E e n e n E e n⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦                               (2) 

where E denotes the expectation operator. 
 

2.2  LMS Algorithm 
The LMS algorithm [4] makes the simplifying 

assumption that the expected value of the squared 
error is approximated by the squared error itself, i.e., 

( ){ } ( )2 2
E e n e n≅ . In vector notation, the LMS 

update relation becomes: 
( 1) ( ) + 2 e(n) (n)n n μ+ =w w u                                      (3) 

where μ is the step size. 
 

2.3  NLMS Algorithm 
In the LMS algorithm, the adjustment applied to 

the tap-weight vector is directly proportional to the 
input vector, u(n). Therefore, when u(n) is large, the 
LMS filters suffer from a gradient noise amplification 
problem. To overcome this difficulty, the NLMS filter 
can be used [5, 6]. 

2( 1) ( ) ( ) ( )
( )

n n n e n
n

μ
δ

+ = +
+

w w u
u

                      (4) 

where 2( )nu is the power of input vector and 0δ > . 

Fig. 1 Dual-channel speech enhancement structure. 
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2.4  FLMS Algorithm 
In deriving the FLMS algorithm, fractional 

derivatives in addition to the first derivative should be 
used. The update relation for the k-th element of the 
weight vector in FLMS is given by [11]: 

1
( ) ( )( 1) ( )

v

k k f v
k k

J n J nw n w n
w w

μ μ∂ ∂
+ = − −

∂ ∂
                   (5) 

where ν (0 <ν < 1) is
 
a real number, μ1 is the first-order 

step size, and μf  is the fractional step-size. 
Applying fractional derivative of order α [21] to 

the mean-square error (cost function (2)), gives: 

1( ) 12 ( ) ( ) ( )
(2 )

v
v

kv
k

J n e n u n k w n
vw

−∂
= − −

Γ −∂
                   (6) 

where Γ(.) denotes the gamma function. The final update 
relation for the weight vectors of the FLMS algorithm 
can be written as: 

1

1

1

1

( )
( ) ( ) ( ) ( ) 0

(2 )
( 1)

( )
( ) ( ) ( ) ( ), 0

(2 )

v
k

k f k

k v
k

k f k

w n
w n e n u n k w

v
w n

w n
w n e n u n k w

v

μ μ

μ μ

−

−

⎧
+ + − ≥⎪

Γ −⎪+ = ⎨
⎪

+ − − <⎪ Γ −⎩

(7) 

It is also noteworthy that from the standpoint of 
implementation, here, a modified version of the update 
rule is used as compared with that given in [11]. The 
Eq. (7) can be rewritten as follows: 

1

1

( 1) ( )

( )
sgn( ( )) ( ) ( )

(2 )

k k

v
k

f k

w n w n

w n
w n e n u n k

v
μ μ

−

+ = +

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟Γ −⎝ ⎠

            (8) 

where sgn(.) denotes the sign function. 
 

2.5  Convex Combination of Two Adaptive Filters 
The structure of convex combination of two 

adaptive filters is shown in Fig. 2 [17, 18]. The 
output of the parallel filter is: 

[ ]1 2( ) ( ) ( ) 1 ( ) ( )y n n y n n y nλ λ= + −                               (9) 

Table 1 The summary of convex combination algorithm [16]. 

1- Initialization: 
1 2

1 2 max

(0) (0) 0;  (0) 0;  (0)=0.5;
(0),  (0),  ,  ,  ,  a

a
r
λ

μ μ μ μ β
= = =w w
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1 2

1 2
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End 
 

Here, 1 1 1( ) ( )Ty n n= w u  and 2 2 2( ) ( )Ty n n= w u  are the 
output of two parallel transversal filters at time n and λ(n) 
is the mixing parameter limited in [0, 1]. 

The mixing parameter λ(n) is updated via an auxiliary 
variable a(n), which is defined as: 

[ ]( ) sgm ( )n a nλ =                                                       (10) 

where sgm(.) is the sigmoidal function, defined as: 

( )

1sgm[ ( )]
1 a na n

e−=
+

                                                (11) 

It is shown in [17] that if λ(n) is chosen properly at 
each iteration, then the above combination extracts the 
best specifications of the individual filters, w1(n) and 
w2(n). The update equation for a(n) is given by: 

[ ] ( )

2

1 2

( )( 1) ( )
2 ( )

( ) ( ) ( ) ( ) ( ) 1 ( )

a

a

e na n a n
a n

a n e n y n y n n n

μ

μ λ λ

∂
+ = −

∂

= + − −
 

(12) 

Table 1 presents the pseudo code of the convex 
combination algorithm. 
 

2.6  Normalized Convex Combination of Adaptive 
Filters 

The overall combinational scheme can be considered 
as a two-layer adaptive filter [15]. In the first layer, the 
two component filters operate independently of each 
other according to their own rules, while the second layer 

 

Fig. 2 Convex combination of two adaptive filters. 
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consists of a filter with the input signal 2 1( ) ( )e n e n− that 
minimizes the overall error. 

The convex combinational filter proposed by [16] 
updates a(n) by the standard LMS algorithm with the 
input 2 1( ) ( )e n e n− and step-size ( )( ) 1 ( ) .a n nμ λ λ−  

Considering the drawbacks of the conventional LMS 
algorithm discussed above, the parameter a(n) can be 
updated efficiently with normalized LMS [20]: 

2 1

( 1) ( )

( )[1 ( )] ( )[ ( ) ( )]
( )

a

a n a n

n n e n e n e n
p n
μ

λ λ

+ = +

− −          
(13) 

where 
2

2 1( ) ( 1) (1 )[ ( ) ( )]p n p n e n e nβ β= − + − −                   (14) 

is a rough (low-pass filtered) estimate of the power of the 
signal of interest. Selection of the forgetting factor, β, is 
rather easy. Typically, a choice of β = 0.9 ensures that 
p(n) is adapted faster than any component filter. The 
overall structure, as given in Eqs. (13) and (14), is called 
normalized convex combination. 
 

2.7  Normalized Fractional Least-Mean-Squares 
(NFLMS) Algorithm 

The new idea is based on the fact that the normalized 
version of LMS algorithm has better performance than 
the standard LMS method. Furthermore, it has been 
shown that the FLMS algorithm, which is an improved 
version of the conventional LMS, has a faster 
convergence rate than LMS [11]. Thus, it is expected that 
using normalized version of FLMS (i.e., NFLMS) instead 
of FLMS leads to a better performance of adaptive filters. 
The update rule for NFLMS is: 

1

1 2

( 1) ( )

( ) 1 ( ) ( )
(2 ) ( )

v

f

n n

n e n n
v n

μ μ
δ

−

+ = +

⎛ ⎞
+⎜ ⎟Γ − +⎝ ⎠

w w

w u
u

                  (15) 

Here, ν  is the fractional order, 1μ  is the first order 
step-size, fμ  is the fractional order step-size, and 0.δ >  
It has been shown that the performance of NFLMS is 
better than the standard LMS, NLMS, and FLMS 
algorithms [22]. 
 
3 Proposed Methods 

In this section, our proposed methods, based on the 
fractional and/or normalized convex combination of 
fractional and/or normalized version of LMS component 
filters is explained. 
 

3.1  Convex Combination of Normalized and/or 
Fractional Least-Mean-Squares Algorithm 

One way of improving the performance of the whole 
convex combinational structure is to improve the 
performance of its component individual filters. In our 
previous work [23], we employed fractional LMS (i.e., 
FLMS) algorithm as individual filter. The result shows 

the superiority of the proposed algorithm. In this paper, 
we employ more LMS-based algorithms, such as NLMS 
and NFLMS as component filter in the structure of 
convex combination. Therefore, it is expected that using 
such algorithms as component filters leads to an 
increased convergence rate and reduced steady-state error 
of the overall filter. For this purpose, convex 
combinational adaptive filtering using NLMS, and 
NFLMS techniques in the implementation of the 
component filters is proposed. This is shown in Fig. 3. 
 

3.2  Fractional Convex Combination of Adaptive 
Filters 

As described in Section 2.5, the mixing 
parameter, ( )nλ , is updated via the auxiliary parameter 
a(n) (Eq. (10)), where a(n) is updated in turn by the LMS 
algorithm (Eq. (12)). In order to improve the performance 
of mixing strategy in the convex combination, the update 
rule can be modified for a(n) using fractional-based 
techniques. The proposed update relation for a(n) in 
FLMS is as follows: 

2 1

( 1) ( )

( ) sgn( ( ))
(1 )

( )[1 ( )] ( )[ ( ) ( )]

v

a a f

a n a n

a n a n
v

n n e n e n e n

μ μ

λ λ

+ = +

⎛ ⎞⎛ ⎞
+ ×⎜ ⎟⎜ ⎟⎜ ⎟Γ −⎝ ⎠⎝ ⎠
− −                              

(16)

 

Here, aμ  and a fμ  are the first order and the 
fractional order step-sizes, respectively. 

To exploit the advantages of both normalization and 
fractional adaptation in the update rule for a(n), the 
fractional normalized convex combination method is 
proposed. It will be shown that this idea leads to better 
performance of mixing parameter, λ(n) The new update 
rule for a(n) is given below: 

2 1

( 1) ( )

( )sgn( ( ))
(1 )

( )[1 ( )] ( )[ ( ) ( )]
( )

v v

a af

a n a n

a n a n
v

n n e n e n e n
p n

μ μ

λ λ

+ = +

⎛ ⎞⎛ ⎞
+ ×⎜ ⎟⎜ ⎟⎜ ⎟Γ −⎝ ⎠⎝ ⎠
− −                                

(17) 

Fig. 3 The structure of the proposed convex combinational 
adaptive filters. 
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where aμ  and afμ  are again the first order and the 
fractional order step-sizes, respectively, and 

2
2 1( ) ( 1) (1 )[ ( ) ( )]p n p n e n e nβ β= − + − −                   (18) 

where β is the forgetting factor. 
 
4 Evaluations and Experimental Results 

For simulations, speech signals from the NOIZEUS 
database are used [24]. Noise signals are taken from the 
NOISEX-92 database [25]. The sampling rate of both 
speech and noise signals are set to 8000 Hz. Signals are 
digitized with 24 bit accuracy. The production of noisy 
speech follows two strategies. In the first strategy, a 30th-
order FIR filter is used as the acoustic path to generate a 
random noisy signal, d(n). In the second strategy, to 
simulate real conditions, the room impulse response 
given in [26] together with speech signal is used to 
generate the input noisy signal, d(n). Fig. 4 illustrates the 
schematic diagram of the simulated room structure. Also, 
the corresponding impulse response is shown in Fig. 5. 

To select an appropriate fractional order and 
fractional step-size for the simulations, learning curve of 
the FLMS algorithm is generated for different fractional 
orders and fractional step-sizes. For these simulations, 
input noisy signal obtained by the first strategy is used. 
From Fig. 6, it is observed that FLMS using fractional 
order 0.5 has the best performance. In addition, taking a 
fractional step-size, μf, equal to the first order step-size, 
μ1, in the update rule of Eq. (7) appears to be the best 
choice among different simulations of the algorithm. 
Table 2 shows the parameters used in the implementation 
of algorithms. 

In order to assess our proposed methods, the 
simulation results of twenty LMS-based algorithms using 
different subjective and objective criteria are investigated. 

First, the performance of algorithms is studied by 
plotting their learning curves (i.e., MSE plots). For this 
purpose, a random white Gaussian noise with variance = -
25 dB as clean input signal, s(n), white Gaussian noise 
with mean=0 and variance = -55 dB as noise signal, u(n), 
a 30th-order type I FIR filter as acoustic path (L = 30), and 
a 25th-order FIR filter as adaptive filter are used (L = 25). 
 
 

 
Fig. 4 Room structure used for the simulation of room impulse 
response. A room reverberation time of RT60= 0.4 sec. is used 
for the simulations. 

 
Fig. 5 The simulated room impulse response. 
 
Table 2 The parameters used for implementation of 
algorithms. 

Algorithms Parameters 
Range 

of 
Values 

LMS, NLMS, 
FLMS, 
NFLMS 

step-size (µ) 0.005 

FLMS 

step-size (µ) 0.005 
fractional step-size (µf) 0.005 

fractional derivation order 
(v) 0.5 

Convex 
Combination 

step-size for first filter (µ1) 0.005 
step-size for second filter 

(µ2) 
0.001 

R 4 
µmax 0.2 
Β 0.95 

a(0) 0 
λ(0) 0.5 
µa 100 

CC-FLMS, 
CC-NFLMS 

fractional derivation order 
(v) 0.5 

fractional step-size of first 
component filter (µf1) 

0.005 

fractional step-size of 
second component filter 

(µf2) 
0.001 

Normalized 
Convex 

Combination 

p(0) 0.21 

µa 1 

Fractional 
Convex 

Combination 
µaf 100 

Fractional 
Normalized 

Convex 
Combination 

µaf 1 

 
Fig. 7 shows the corresponding plots for the LMS, 

FLMS, NLMS, and NFLMS algorithms, obtained by 
averaging the results over 1000 runs. As the results of 
this simulation show, the proposed method (i.e., 
NFLMS) converges faster than other algorithms. 
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(a) 

(b)
Fig. 6 The impact of fractional order (a) and fractional step-size 
(b) on the performance of the FLMS algorithm. 
 
 

Fig. 7 The learning curves of LMS, FLMS, NLMS, and 
NFLMS for a 30th-order Type I FIR filter as acoustic path and 
25th-order adaptive filter with a random signal as input clean 
signal and white noise as noise signal, averaged over 1000 runs. 

To decide which type of component filters (i.e., LMS, 
FLMS, NLMS, and NFLMS) fits the most of the various 
convex combinational structures (i.e., Convex 
Combination (CC), Fractional Convex Combination 
(FCC), Normalized Convex Combination (NCC), and 
Fractional Normalized Convex Combination (FNCC)), 
the MSE plots drawn in Figs. 8 and 9 have been 
investigated. As it is observed from the simulated plots, 
NFLMS and NLMS have better convergence rates among 
all the convex combinational structures mentioned above. 
In general, it can be concluded that NLMS has the best 
performance in the sense of convergence rate among all 
simulated component filters. 

Now, to decide which type of the mixing strategy 
(i.e., CC, FCC, NCC, and FNCC) fits the most with the 
best selected component filter (i.e., NLMS), the learning 
behavior of various convex combinational structures, 
shown in Fig. 10, have been studied. The results of this 
simulation show clearly that the FNCC mixing strategy 
gives the best performance among all the mentioned 
structures. 
 

(a) 

(b) 

Fig. 8 The learning curves of CC-LMS, CC-FLMS, CC-NLMS, 
CC-NFLMS (a), and FCC-LMS, FCC-FLMS, FCC-NLMS, and 
FCC-NFLMS (b) for a 30th-order Type I FIR filter as acoustic 
path and 25th-order adaptive filter with a random signal as input 
clean signal and white noise as noise signal, averaged over 500 
runs.
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(a)

(b)
Fig. 9 The learning curves of NCC-LMS, NCC-FLMS, NCC-
NLMS, NCC-NFLMS (a), and FNCC-LMS, FNCC-FLMS, 
FNCC-NLMS, and FNCC-NFLMS (b) for a 30th-order Type I 
FIR filter as acoustic path and 25th-order adaptive filter with a 
random signal as input clean signal and white noise as noise 
signal, averaged over 500 runs. 
 
 

In the assessments of the proposed methods based on 
MSE plots, random signal is used as input clean signal 
(i.e. the first strategy). 

Now, the performances of our proposed methods are 
examined in the case of real speech signals. The 
evaluations of the methods are conducted by inspecting 
the quality of the enhanced speech signal both in 
objective and subjective manners. In this part of 
simulations, the room impulse response is used to 
simulate real acoustic conditions. As noise signal, babble 
noise with SNRs of 0 dB and 10 dB, and car noise with 
SNRs of -5 dB and 5 dB are used. 

 
Fig. 10 The learning curves of CC-NLMS, FCC-NLMS, NCC-
NLMS, and FNCC-NLMS for a 30th-order Type I FIR filter as 
acoustic path and 25th-order adaptive filter with a random signal 
as input clean signal and white noise as noise signal, averaged 
over 500 runs. 
 

As objective evaluation criteria, the segmental SNR 
and PESQ tests [27-28] are employed. The results are 
shown in Figs. 11, 12, 13, and 14 for different noise 
sources and different input SNR values. As it can be seen 
from the figures, the speech signal enhanced by FNCC-
NLMS has the best quality, compared with that obtained 
from other methods. This is in accordance with the MSE 
evaluation results obtained by using a random clean 
signal. 

In order to assess the proposed algorithms 
subjectively, the MUlti Stimulus test with Hidden 
Reference and Anchor (MUSHRA) is used, which is an 
ITU-R Recommendation BS.1534-1 [29] as implemented 
in [30, 31]. This method has been used in the framework 
of speech separation problem to assess the quality of 
separated speech signal [32]. 

Before beginning the listening tests, listeners are 
informed about the aim of the listening task, namely, the 
assessment of speech quality. For this purpose, listeners 
are asked to pay attention to the amount of background 
noise and speech distortion. Here, a training phase is 
conducted to make listeners familiar with the test 
procedure. First, subjects are allowed to listen to the test 
speech signals without evaluating them. Then, they are 
asked to give scores to the processed signals. 

The subjects (i.e., human listeners) are provided with 
test utterances plus one reference and one hidden anchor, 
and are asked to rate different signals on a scale of 0 to 
100, where 100 represents the best score. The listeners 
are permitted to listen to each sentence several times and 
always have access to clean signal reference. 

The test signals are the same as those used for the 
objective evaluation. Two types of noises (i.e., Car noise 
and Babble noise) are used during the listening tests. A 
total of 10 listeners (3 females and 7 males between the 
ages of 18 and 30) have participated in these tests. 
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Fig. 11 PESQ and SNR improvements for the CC-FLMS, CC-NLMS, CC-NFLMS, NCC-FLMS, NCC-NLMS, NCC-NFLMS, FNCC-
FLMS, FNCC-NLMS, and FNCC-NFLMS algorithms obtained by using a real speech signal as input clean signal and babble noise with 
SNR of 0 dB as input noise signal. 
 
 

 
Fig. 12 PESQ and SNR improvements for the CC-FLMS, CC-NLMS, CC-NFLMS, NCC-FLMS, NCC-NLMS, NCC-NFLMS, FNCC-
FLMS, FNCC-NLMS, and FNCC-NFLMS algorithms obtained by using a real speech signal as input clean signal and babble noise with 
SNR of 10 dB as input noise signal. 
 
 

 
Fig. 13 PESQ and SNR improvements for the CC-FLMS, CC-NLMS, CC-NFLMS, NCC-FLMS, NCC-NLMS, NCC-NFLMS, FNCC-
FLMS, FNCC-NLMS, and FNCC-NFLMS algorithms obtained by using a real speech signal as input clean signal and car noise with 
SNR of -5 dB as input noise signal. 
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Fig. 14 PESQ and SNR improvements for the CC-FLMS, CC-NLMS, CC-NFLMS, NCC-FLMS, NCC-NLMS, NCC-NFLMS, FNCC-
FLMS, FNCC-NLMS, and FNCC-NFLMS algorithms obtained by using a real speech signal as input clean signal and car noise with 
SNR of 5 dB as input noise signal. 
 
 

           
Fig. 15 The MUSHRA listening test results obtained by using a real speech signal as input clean signal, and babble noise with SNRs 
of 0 dB and 10 dB (left panel) and car noise with SNRs of -5 dB and 5 dB (right panel) as input noise signals. 
 
 
 

Fig. 15 shows the results of subjective listening tests 
for each algorithm and different noise types. By 
examining the results of listening tests, it is obvious that 
the FNCC-NLMS method produces the highest speech 
quality in speech enhancement system, as compared with 
other simulated algorithms. The superior performance of 
the FNCC-NLMS method is in agreement with the results 
obtained during the objective evaluation tests, and is 
again in accordance with the MSE learning curves 
obtained by random clean signal. 
 
5 Conclusions 

In this paper, new convex combinational adaptive 
filtering methods are proposed in the framework of 
speech enhancement system. The proposed methods 
utilize the idea of normalization and fractional derivative, 
both in the design of different convex mixing strategies 
and in their related component filters. 

To evaluate the performance of this new idea, in the 
first strategy, the simulations of learning curves (i.e., 
MSE plots) are examined using random signal instead of 
clean speech signal. As it can be inferred from the 
behaviors of the MSE plots, it can be verified that the 
idea of normalization and fractional derivative leads to 
improved performance in the sense of convergence rate in 
the whole structure of convex combinational adaptive 
filtering. The study of MSE learning curves shows clearly 
that the FNCC-NLMS algorithm has the best 
performance among all the proposed (i.e., CC-NLMS, 
CC-NFLMS, FCC-LMS, FCC-NLMS, FCC-FLMS, 
FCC-NFLMS, NCC-FLMS, NCC-NFLMS, FNCC-LMS, 
FNCC-FLMS, FNCC-NLMS, and FNCC-NFLMS) and 
simulated algorithms. 

In the second strategy, a real input speech signal is 
used in the simulations and the quality of enhanced 
speech is investigated, both objectively and subjectively. 
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To this aim, FNCC-NLMS, as selected by the MSE 
evaluations, is compared with other convex 
combinational methods. As objective evaluation, SNR 
and PESQ improvements, obtained from different 
methods, are compared. From the results, it can be 
concluded that the speech enhanced by FNCC-NLMS has 
the highest quality. 

To assess the performance of FNCC-NLMS 
subjectively, listening tests have been conducted for the 
enhanced (real) speech obtained by applying the same 
methods as used in the objective evaluations (i.e., SNR 
and PESQ tests). The results show, once again, that the 
speech signal enhanced by FNCC-NLMS presents the 
highest quality among the signals obtained by all 
simulated methods. 

In general, the powerful aspects of our proposed 
methods can be stated to be their low complexity, as 
expected with all LMS-based methods, together with 
their high convergence rate. 

As future work, the new adaptive filtering structures 
can be incorporated in other adaptive signal processing 
applications. 
 
Appendix 

The computational complexity of the most important 
relations used in different adaptive algorithms are shown 
in Table 3. The computations have been performed by 
considering the number of additions and multiplications 
in each iteration assuming that the length of filter is L. 
The interpretation of the results of this table confirm the 
fact that the computational load depends both on the 
number of operations (i.e., additions and multiplications) 
and the use of nonlinearities, such as sign function, 
sigmoidal function, and fractional order, used in the 
update rules. Also, it can be observed that the 
computational burden is remarkably increased by using 
convex combination structure in speech enhancement 
systems. It can generally be concluded that the overall 
computational load of the convex combinational adaptive 
filtering is almost twice that of traditional algorithms. 
 
 
Table 3 The computational complexity of important relations. 

Equation No. of Additions No. of Multiplications
Eq. (1) L L 
Eq. (3) L 2L 
Eq. (4) L 5L 
Eq. (8) 2L 6L 
Eq. (9) L 2L 
Eq. (12) 3L 5L 
Eq. (13) 3L 6L 
Eq. (14) 3L 4L 
Eq. (16) 3L 6L 
Eq. (17) 3L 9L 
Eq. (18) L 4L 
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