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Abstract: Fault classification in distance protection of transmission lines, with considering 
the wide variation in the fault operating conditions, has been very challenging task. This 
paper presents a Probabilistic Neural Network (PNN) and new feature selection technique 
for fault classification in transmission lines. Initially, wavelet transform is used for feature 
extraction from half cycle of post-fault three phase currents at one end of line. In the 
proposed method three classifiers corresponding with three phases are used which fed by 
normalized particular features as Wavelet Energy Ratio (WER) and Ground Index (GI). 
The PNNs are trained to provide faulted phase selection in different ten fault types. Finally, 
logic outputs of classifiers and GI identify the fault type. The feasibility of the proposed 
algorithm is tested on transmission line using PSCAD/EMTDC software. Variation of 
operating conditions in train cases is limited, but it is wide for test cases. Also, quantity of 
the test data sets is larger than the train data sets. The results indicate that the proposed 
technique is high speed, accurate and robust for a wide variation in operating conditions 
and noisy environments. 
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1 Introduction1 
Basically, fast detecting, isolating, locating and 
repairing of the different faults are critical in 
maintaining a reliable power system operation [1]. On 
the other hand, classification of the different fault types 
plays very important role in digital distance protection 
of the transmission lines [2]. During fault, the amplitude 
and frequency of the current waveforms change from 
normal state to transient state. Due to the 
electromagnetic coupling between three phase lines of 
the transmission line, the transient disturbance is 
generated in the healthy phase currents. Therefore, 
distinguishing of the faulted phase and identifying of the 
fault type are complex task. The oscillation of the three 
phase currents in different faults are affected by 
operating conditions such as, Source impedance (Zs), 
power angle (δ), fault inception angle (FIA), fault 
location (Lf) and fault resistance (Rf). In the case of the 
EHV transmission line fault study, the response of the 
C-phase current to c-g (faulty phase) and ab-g (healthy 
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phase) for two different operating conditions has been 
shown in Fig. 1. Thus, fault classification in digital 
distance protection, with considering the wide variation 
in the fault conditions, has been very challenging task 
and modern pattern recognition techniques can used for 
this task. 
 
 
 

 
Fig. 1 Phase current at two different operating conditions. 
Operating condition 1: δ = 20o, Lf = 0.95p.u, Rf = 200 Ω. 
Operating condition 2: δ = 30o, Lf = 0.05p.u, Rf = 0 Ω. 
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The increasing complexities of the modern power 
transmission systems have greatly raised the importance 
of the fault classification research studies in recent 
years. The fault classification techniques for designing 
digital distance relay are used in many researches. 
Transmission line fault classification techniques can be 
classified into some main categories: wavelet transform 
[3, 4], fuzzy logic system [5, 6], neural network [7-10] 
and support vector machine (SVM) [11]. Chanda et al. 
[3] have proposed an algorithm with Daubechies eight 
(Db8) wavelet for fault classification in transmission 
line using 3rd level output of multi-resolution analysis 
(MRA) detail signals of currents. But in that algorithm 
the phases involved in the fault does not explicitly 
determined and time duration considered in the analysis 
comes out to 40.96 ms, which is about two cycles after 
post fault. Das et al. [5] have presented a fault 
classification technique based on fuzzy logic for ten 
types of fault in transmission line on half cycle post- 
fault current sample, but that approach is valid for 
limited variable conditions. 

Silva et al. [9] have proposed wavelet energy and 
artificial neural network (ANN) for fault detection and 
fault classification, respectively. But validation of their 
method has been tested just by same fault inception 
angle variables (FIA=60, 150 for both training and test 
data sets).While FIA is an effective variable in fault 
current analysis. Also, that approach uses both post-
fault voltage and current samples. Samantaray et al. [10] 
have presented a technique based on combination of S -
transform and PNN for fault classification in thyristor 
controlled series compensated (TCSC) transmission 
line. In this method, features extracted by S transform 
are used as inputs to PNN for fault classification. 
Moreover, in that work, 300 data sets have been used 
for training whereas only 200 data sets have been used 
for testing the performance of the proposed technique. 
Parikh et al. [11] have proposed SVM technique for 
fault classification in series compensated transmission 
line. Classification accuracy has been reported over 
98% for 25,200 test cases. But validation of the 
proposed approach investigated for limited variation in 
fault resistance (Rf) up to 50Ω and variation in fault 
distance (Lf) up to 0.8 (in p.u. of line length). 

Recently, Upendar et al. [12, 13] have presented an 
algorithm based on the wavelet transform of three phase 
currents and the PNN and the classification and 
regression tree (CART) methods. The accuracy of the 
fault classification method has been reported over 99% 
upon 1,209,960 test cases. But, the structure of the 
studied power system has been composed of the one 
generator and one fixed load with the transmission 
between them. Thus, the authors have considered only 
three operating condition variables (Rf, Lf and FIA). 
Also, the fault identification algorithm is low speed. 
Because, the 7rd level output of MRA detail signals of 
two cycles post fault currents have been used for feature 
extraction technique. 

The previous fault classification techniques [3-12] 
haven’t considered wide variation of all five operating 
conditions for test cases while training cases included 
limited variation of operating conditions. Also, some of 
the above schemes are affected by noise signal. 
However, in this work, an improved approach has been 
proposed for solving above drawbacks. For example, 
our proposed technique is tested for fault resistance up 
to 200 Ω, fault location up to 0.95 of line length, fault 
inception angle up to 160°, power angle up to 40° and 
source impedance up to125% of Zs, while the algorithm 
is trained for fault resistance up to 100 Ω, fault location 
up to 0.8 of line length, fault inception angle up to 90°, 
power angle up to 30° and source impedance 100% of 
Zs. In addition, the accuracy of this technique is 
investigated in noisy environments. 

PNN classifier and Wavelet Energy (WE-PNN) 
combination technique has been proposed for transient 
signal classification [14, 15].The wavelet transform is a 
powerful tool in the analysis of the transient phenomena 
in power system due to its ability to extract information 
from the transient signals simultaneously in both of time 
and frequency domain, rather than conventional Fourier 
transform which can only give the information in the 
frequency domain. ANNs have some drawbacks, 
including the determination of network architecture and 
network parameters assignment. When networks are 
applied in dynamic environments, especially for online 
applications, for example protection purpose, traditional 
networks can become the bottleneck in adaptive 
applications. Considering these limitations, the PNN is 
suitable for faults identification. The PNN classifiers are 
recognized as having expandable or reducible network 
structure, fast learning speed, and promising results. 
PNN can function as a classifier, and it has the 
advantage of a fast learning process, requiring only a 
single-pass network training stage without any iteration 
for adjusting weights, and it can adapt itself to 
architectural changes. 

In this paper, a new fault classification scheme for 
transmission line is presented based on combination of 
Wavelet Energy Ratio and Probabilistic Neural Network 
(WER-PNN). Three PNNs and one ground detector are 
proposed for fault type identification. Faulted phase and 
ground fault are determined by PNN classifiers and 
ground detector, respectively. Three inputs are used to 
train each classifier in order to classify the faulty phase 
and healthy phase. For selecting the mentioned features, 
initially, wavelet transform is used for feature extraction 
from half cycle post-fault three phase currents at the one 
of two ends (relay position). The 4rd level wavelet 
Multi-Resolution Analysis (MRA) detail and 
approximation signals are found to be most suitable and 
are used for the analysis. The Wavelet Energy Ratio 
(WER) and Ground Index (GI) are proposed as features 
for classifiers. WER is equal to ratio of wavelet 
coefficient energy at each phase to summation wavelet 
energy coefficients of all phases. The GI is determined 
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based on comparison of the maximum absolute of 
ground current with a threshold value. Thus, the 
proposed feature selection method is a new technique. 
Each individual classifier with such particular three 
features (two WERs and one GI) is able to recognize the 
healthy phase from faulted phase, correctly. Finally, 
identification of ten types of fault is based on logic 
output of three PNN classifiers and ground detector. 
The proposed method is tested under different fault 
conditions such as different fault locations, different 
fault inception angles, different fault resistances, 
different load angles and different sources impedances. 
The investigation results confirm the validity and high 
accuracy of the proposed technique. 

The most important advantages of the proposed 
method are as follows: 
• Half cycle post-fault currents are required at one of 

the two ends of the transmission line. 
• Low dimension of classifier normalized input vector 

(three features 0~1) is required, thus the memory 
requirement and computation time will be reduced. 

• Training and testing process of PNN classifier are 
fast. 

• The PNN classifier needs to determine only one 
parameter (smoothing parameter). 

• The proposed method is applicable for a wider 
variation in the operating conditions in testing stage 
rather than training process. 

For evaluation of proposed algorithm, the extra high 
voltage (EHV) transmission line has been simulated in 
PSCAD/EMTDC software [16]. It is powerful software 
that generates transient signals. Classification operation 
has been carried out in MATLAB environment [17]. 
The structure of this paper is as follows: 

In Section 2, the proposed technique is explained. 
Section 3 describes simulation consideration. Section 4 
performance results in details. Section 5 includes further 
studies such as, results comparison and noise effect. 
Finally, the paper closes with conclusions in Section 6. 
 
2 WER-PNN Technique for Fault Classification 

2.1   Architecture of the Proposed Fault 
Classification Algorithm 

The structure of the proposed fault classification 
system is shown in Fig. 2. The algorithm consists of 
three stages, including feature extraction, feature 
selection and fault classification. The system takes half 
cycle of the post-fault from the three phase currents at 
the current recorder (relay location).The ground current 
is calculated from the samples of the three line currents 
(Ig=Ia+Ib+Ic). In this algorithm, three PNNs and one 
ground detector (GD) have been used for fault 
classification method. Each of the three PNNs (PNNa, 
PNNb, PNNc) is used to identify the faulted phase(s) and 
the ground detector (GD) is used to determine the 
involvement of the ground in the fault. At the output of 
each PNN, the value ‘1’ and ‘0’ denotes the presence or 
absence of the fault, respectively. Table 1 shows the 

fault classification format in the proposed method while 
Fig. 2 depicts the overall fault classification scheme. 
 
 
 
Table 1 Fault classification format. 

Type
of 
fault 

Output 
of GI 
for 
ground 

Output 
of 
PNNc 
for 
phase 
Ic 

Output 
of 
PNNb 
for 
phase 
Ib 

Output 
of 
PNNa 
for 
phase 
Ia 

Sr. 
no.  

a-g1 0 011
b-g1 0 102
c-g1 1 003
ab-g1 0 114
ca-g1 1 015
bc-g1 1 106
ab0 0 117
ca0 1 018
bc0 1 109
abc0 1 1110

 
 
 

 
Fig. 2 Structure of the fault classifier. 
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2.2   New Feature Selection from the DWT for Fault 
Classification 

A wavelet transform is a powerful tool for feature 
extraction of the transient signals. The transmission line 
faults are common transient phenomena in power 
system. Faults are low amplitude, short duration, fast 
decaying and oscillating type of high frequency current 
signals. There are many types of mother wavelets, such 
as Harr, Daubichies, Coiflet and Symmlet wavelets. The 
choice of the mother wavelet plays an important role in 
the feature extraction from transient signals. One of the 
most popular mother wavelets suitable for a wide range 
of applications is Daubichies’s wavelet [14]. 

The wavelet technique has been applied in many 
literatures for feature extraction of transient fault signals 
in power system. The differentiations between these 
methods are: different frequency sampling rates, 
different mother wavelet types, different number of 
decomposition levels and state of calculating the energy 
or entropy features. Most of the previous studies have 
used the detail coefficients as feature vectors in the fault 
transient analysis [3, 12-13]. The above works find 
limitations arisen of highly susceptible of wavelet detail 
coefficients to noise so that provides erroneous results 
even with noise of SNR 20 dB. Also, time duration 
considered in those methods comes out to two cycles 
after post fault. However, these algorithms have low 
speed. In our work, a new feature selection using 
wavelet transform has been proposed for solving above 
drawbacks. 

In the proposed paper, we introduced a new feature 
selection technique based wavelet energy ratio (WER). 
The WER is normalized feature (0 ~1) and defined as a 
ratio of corresponding phase energy to sum of the three 
phase energies. Half cycle from post fault current 
samples are required in our algorithm, hence our 
method is fast. In other word, due to using of 4th level 
approximation coefficients, our technique provides 
successful results even with noise of SNR 30 dB and 20 
dB. Detail explanation of the proposed feature selection 
method is presented in below. 

In this work, the db8 is used as mother wavelet 
transform, particularly. Fig. 3 illustrates the 
implementation procedure of a Discrete Wavelet 
Transform (DWT), in which X(n) is the original signal, 
h(n) and g(n) are high-pass and low-pass filters, 
respectively. At the first stage, an original signal is 
divided into two halves of the frequency bandwidth, and 
sent to both high-pass filter and low-pass filter. 
 
 

 
Fig. 3 Implementation of DWT. 

Then the output of low-pass filter is further cut in 
half of the frequency bandwidth, and sent to the second 
stage. This procedure is repeated until the signal is 
decomposed to a pre-defined certain level. The set of 
attained signals represent the same original signal, but 
all corresponding to different frequency bands. 
Sampling frequency in this work is 20 kHz. Therefore 
frequency domain for detail coefficients (CD1, CD2, 
CD3, CD4) are 10~20 kHz, 5~10 kHz, 2.5~5 kHz, 
1.25~2.5 kHz, respectively, and for approximation 
coefficient (CA4) is 0~1.25 kHz. 

The robustness against noise effect is one of the 
proposed algorithm purposes. Thus, for feature selection 
task, considering the noise effect is essential. The cases 
of pure signal fault current and added noisy signal are 
shown in Figs. 4 and 5. With comparison to pure signal, 
it is found that noisy signal has little effect on fourth 
level of wavelet coefficients (CD4, CA4). Also, In order 
to reduce the effect of the dc offset in the fault current 
waveform, the first level detail coefficient (CD1) is 
neglected. Also, it is observed that, the detail 
coefficients at second and third levels (CD2 and CD3) 
are affected by signal noise. However, mentioned 
coefficients (CD1, CD2 and CD3) are neglected and 
CD4 and CA4 are selected as suitable features for 
feature selection analysis. 
 
 

 
Fig. 4 Fault current and wavelet coefficients for pure signal. 
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Fig. 5 Fault current and wavelet coefficients for signal with 20 
dB noise. 
 

The energy of the approximate wavelet coefficient 
(EA4) and the energy of the detailed wavelet coefficient 
(ED4) are calculated by using Eqs. (1) and (2), 
respectively: 

∑
=

=
N

i
iCDED

1

244                                             (1) 

∑
=

=
N

i
iCAEA

1

244                                                (2) 

Here, N denotes the length of the window in terms 
of the number of sample points. In this work all current 
waveforms are sampled in a frequency of 20 kHz and 
the window length considered for energy calculation is 
10 ms post fault inception time. As mentioned above, 
the energy of the three currents (ED4a, EA4a, ED4b, 
EA4b, ED4c, EA4c) are calculated. 

Proposed fault classification scheme involves three 
classifiers for faulted phase selection in various fault 
types. The classifiers (PNNa, PNNb, PNNc) are fed by 
feature vectors as Xa, Xb and Xc, respectively. The 
feature vectors are three dimension vectors and 
presented below: 

  GI]   WER WER[=X
 GI]   WER WER[=X

GI]   WER WER[=X

c2,c1,c

b2,b1,b

a2,a1,a                                    (3) 

In characteristic features, first two features are WER 
for detailed and approximate coefficient  in fourth level 
of MRA (ED4n, EA4n). The WER is ratio of wavelet 
coefficient energy in each phase to summation wavelet 
coefficient energies of all phases. WERs have been 
computed as: 
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where: 

         EA4+EA4 +EA4=EA4
 ED4+ED4 +ED4=ED4

cbat

cbat                      (5) 

The third feature is GI that it is same for three 
classifiers in each case and calculated based on 
maximum absolute of ground current in half cycle after 
post-fault. This technique has been applied for detection 
ground faults in [6]. The GI is calculated as follows: 

0=GI Else
 1=GI, 0.001(kA) >Ic))+Ib+Ia=max(abs(Ig If     (6) 

 
2.3   PNN for Automatic Faulted Phase Selection 
The PNN at first proposed by Donald Specht in 1990 

[18]. This is an Artificial Neural Network (ANN) for 
nonlinear computing which approaches the Bayes 
optimal decision boundaries. The ANNs, which have 
gained prominence in the area of pattern recognition, 
have several properties that make those attractive for 
transient signal recognition. These include a relatively 
simple implementation, inherently parallel algorithm 
(making parallel implementation for natural 
progression), robustness to noise and self-learning 
ability. The PNN is a 3-layer, feed-forward, one-pass 
training algorithm used for classification and mapping 
of data. Unlike other ANNs, like the back-propagation 
neural network, it is based on well-established statistical 
principles derived from Bayes’ decision strategy and 
non-parametric Kernel based estimators of probability 
density functions. Advantages of the PNNs is that it is 
easy to add new categories, or new training inputs, into 
the already running structure, which is good for the on-
line applications. 

The PNN operates using spherical Gaussian radial 
basis functions centered at each training vector. Fig. 6 
shows the architecture of a PNN model that is 
composed of the radial basis layer and the competitive 
layer. In the signal classification application, the 
training examples are classified according to their 
distribution values of probabilistic density function 
(PDF), which is the basic principle of the PNN. A 
simple PDF is defined as follow: 

   )
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Fig. 6 Architecture of the proposed PNN. 
 
 

Modifying and applying Eq. (8) to the output vector 
H of the hidden layer in the PNN is as below: 
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2
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i
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h δ
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                                  (8) 

The algorithm of the inference output vector H in the 
PNN is as follows: 
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where i is number of input layers, h is number of hidden 
layers; j is number of output layers; k is number of 
training examples; Nk is number of classifications 
(clusters); δ is smoothing parameter (standard 
deviation), 1<  < 0.1 δ , The choice of the δ parameter 
has an effect on PNN’s classification accuracy. In this 
paper, particular classifier parameters have been 
appropriately chosen. Smoothing parameters only 
determined in loading the training data set, 
experimentally. Also,  X-X kj  is Euclidean distance 

between the vectors X and Xkj; i.e.,  X-X kj ; 

∑ −=
i

kji XX 2
kj )( X-X ; xh

ihW  connection weight 

between the input layer X and the hidden layer H; 
hy

hiW is the connection weight between the hidden layer 
H and the output layer Y. 
 
3 Case Studies 

3.1   Transmission Line Model 
A transmission line model has been simulated using 

PSCAD/EMTDC software [16]. Fig. 7 shows the 
simulated network. For each and every fault case, the 
duration of the fault has been assumed to be 0.1 s (5 
cycles).  The 400 kV, 50Hz EHV power system consists 
of two sources connected by transmission line is used 
for the distance protection study. The location of the 
relay is bus no. 1. 
 
 

 
Fig. 7 Transmission line. 
 

The transmission line has been represented by the 
‘Bergeron’ line model, which is recommended for relay 
studies [5]. The parameters of the power system model 
(Fig. 7) are as follows [5]: 
• line length = 300 km 
• source voltages: 
    ◦ source 1: v1 = 400   δ∠ kV 
    ◦  source 2: v2 = 400 kV 
        where δ is the load angle. 
• source impedance (both sources): 
   ◦ positive sequence impedance = 1.31 + j15.0 Ω 
   ◦ zero sequence impedance = 2.33 + j26.6 Ω 
• frequency = 50 Hz 
• transmission line impedance: 
   ◦ positive sequence impedance = 8.25 + j94.5 Ω 
   ◦ zero sequence impedance = 82.5 + j308 Ω 
   ◦ positive sequence capacitance = 13 nF/km 
   ◦ zero sequence capacitance = 8.5 nF/km 
 

3.2   Generated Different Train and Test Data Sets 
To verify the robustness of the proposed algorithm, 

extensive fault simulations under various conditions are 
performed. To illustrate the performance of the 
proposed method, two faults simulations are studied. 
First simulation is performed under limited operating 
conditions and the generated data sets are used to train 
the classifiers. But second simulation is carried out 
under wide variation of operating conditions and the 
generated data sets are used to test the classifiers. There 
are only very few previous studies that address the 
above issue of classification fault in transmission line. 

In Table 2, all five simulation variables including 
source impedance (Zs), power angle (δ), fault inception 
angle (FIA), fault location (Lf) and fault resistance (Rf) 
are presented. As shown in Table 2, the training cases 
include limited variation of variables, while the test 
cases involve wide variation of variables. For example, 
for train cases, fault resistances and fault locations are 
set up to100 Ω and 0.8p.u respectively. But, the test cases 
include fault resistances and fault locations up to 200 Ω 
and 0.95p.u respectively. In the training case, value of 
two impedance source is equal 100% (impedance equal 
to BSLV). But the different five combinations of Zs1 
and Zs2 values have been investigated for test cases are 
shown in Table 3. For each combination of different 
variables, all the ten types of faults have been 
considered. 
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Table 2 Simulation variables data set used in digital 
simulation. 

 
 
Table 3 Combinations of ZS for test data. 

Case no. ZS1 (%) ZS1 (%) 
1 100 100 
2 100 75 
3 75 100 
4 100 125 
5 125 100 

 
 

A number of 240 training cases and 1200 test cases 
are generated by simulation of transmission line. Thus, 
1440 simulation cases are generated for all system 
conditions. All the fault simulation studies are carried 
out using PSCAD/EMTDC software [16], which is an 
extremely versatile, industry standard simulation tool 
used for studying the transient behavior of electric 
power networks. The wavelet toolbox in MATLAB is 
used to perform the wavelet transformation to extract 
the feature vectors. All three classifiers are trained 
offline using the feature vectors generated using the 
training vector (3×240). The PNN classifiers have been 
implemented in the MALAB environment. 

The performance of the trained PNN is evaluated by 
the testing pattern sets that are different from training 
pattern sets. The size of testing pattern sets are1200 
patterns for each classifier. Therefore, the total size of 
classifier input vector testing stage is 3 × 1200 (three 
features per phase and 1200 patterns). After the PNNs 
are trained, their performance is tested with the test 
vectors. The resultant output of individual PNN denotes 
whether the corresponding phase is involved in the fault 
or not. Subsequently, the accuracy of the fault 
classification algorithm is computed as: 

      100×
cases test ofnumber Total

casestion classificafault correct  ofNumber =η

                                                                      (10) 
 
4 Results and Discussion 

After executing the training procedure, the PNNs are 
tested using simulated fault patterns not presented 
during the training process. To test the effectiveness of 
the proposed scheme, a number of simulation studies 
have been carried out on the test system. The train and 
test data sets are composed of over 1440 cases including 
different fault resistances, fault inception angles, source 
impedances, load angles and fault distances. The feature 
vectors Xa, Xb and Xc are extracted and fed to the each 
classifier. 

As an example, values of feature vectors for ten 
types of fault under limited variation of operating 
condition (Zs1 = Zs2=100%, δ = 10°, FIA = 0°, Lf = 
0.05p.u, Rf = 5Ω) are shown in Table 4. Also, the values 
of feature vectors for ten types of fault under wide 
variation of operating condition (Zs1 =125%, Zs2 =100%, 
δ = 40°, FIA = 160°, Lf = 0.95p.u, Rf = 200Ω) are shown 
in Table 5. As seen from the Tables 4 and 5, the values 
of the feature 2 of three feature vectors is higher for the 
faulty phase in the fault process compared to healthy 
phase. For example, in a-g fault shown in Table 4, the 
feature 2 is 0.9949. But for b-phase and c-phase the 
values are 0.0041 and 0.0010, respectively. Considering 
the numerical results of Tables 4 and 5, it seems that the 
feature1 for faulted phase in comparison with healthy 
phase has untidy behavior. But in section 5.2 
(Comparison with other classification scheme), it is 
illustrated that the behavior of first feature depends on 
the value of the feature 2 for two classes and this 
relationship is nonlinear and tidy. Lead to nonlinear 
behavior of the features, the PNN classifier is used as 
artificial intellect in this paper. 

It has been observed that the values of max(abs(Ig)) 
are high (greater than 100A) for faults involving ground 
and low (less than 1A) for faults not involving ground 
[6]. Tables 4 and 5 confirm that the involvement of 
ground in a fault can be easily detected based on the 
value of max(abs(Ig)). 

After training each classifier with their particular 
training feature vectors (3×240), individually, proposed 
algorithm is tested with test feature vectors (3×1200). 
Upon testing of test cases, an overall fault classification 
accuracy of 99.15% has been obtained by the proposed 
algorithm. Table 6 depicts the performance of the 
proposed fault classification technique for different 
types of faults. It is observed that the proposed 
technique gives highly accurate results for all types of 
faults. In Table 6, the proposed algorithm accuracy for 
each type fault and total types is indicated. It is 
observed that the ground faults have the lowest accuracy 
of classification among fault categories. 
 

Test Training Simulation 
variables 

75-100- 125 100 Source impedance 
(of base source 

impedance value) 
20-40 10 –30 Power angle (δ) 
45-160 0 – 90 Fault inception 

angle ( ° ) 
0.5 – 0.95 0.05 – 0.8 Fault location 

(percent of line) 
25 -75 -200 5 – 50 – 100 Fault resistance (Ω) 

a-g , b-g , c-g, ab-g,  ca-g 
bc-g , ab, ca, bc, abc

Fault type 
 

Train cases: 1×2×2×2×3×10=240 
Test cases: 4×2×2×2×3×10=1200 
Total cases: 240+1200=1440

 
Total cases 
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The results show that the highest fault accuracy for 
phase fault category (L-L, L-L-L). The minimum fault 
accuracy is for L-L-g with nine errors, that seven of 
them are belong to fault on condition Lf = 0.95p.u and Rf 
= 200 Ω. While, the train data cases involve the 
maximum of variable condition for above patterns up to 
Lf = 0.80p.u and Rf = 100 Ω. The L-L-g fault 
classification accuracy is lower than L-g, because 
disturbance in healthy phase current is greater in it. 
Thus, PNN classifiers have largest mismatch in L-L-g 
fault types. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on above description, it is found that even 

with a small training data set (which is roughly 20% of 
the testing data set), the achievable accuracy of the 
proposed method is quite high. The performance of the 
proposed technique for varying source impedance on 
five cases has also been analyzed. The results are shown 
in Table 7. Results show the breakup of the results for 
source impedance variations in both ends of the 
transmission line. The table shows that the developed 
technique is fast (10 ms after FIA) and quite effective 
for variations of parameters (ZS1, ZS2) except for one 
case, where fault classification accuracy goes 100%. 
 

Table 4 Feature vectors for different faults under limited variation of operating conditions. 

Max(abs(Ig)) 

(kA) 

Xc 

for PNNc 

Xb 

for PNNb 

Xa 

for PNNa 
 

Fault 

Type 

9.9113 
7.5481 
7.6370 

 

[0.4215 - 0.0010 - 1] 
[0.4553 - 0.0080 - 1] 
[0.1120 - 0.9811 - 1] 

 

[0.4153 - 0.0041 - 1] 
[0.0893 - 0.9890 - 1] 
[0.4438 - 0.0074 - 1] 

 

[0.1633 - 0.9949 - 1] 
[0.4554 - 0.0031 - 1] 
[0.4442 - 0.0115 - 1] 

 

a-g 
b-g 
c-g 

 

L - g 

5.8145 
5.6356 
7.4037 

 

[0.8167 - 0.0008 - 1] 
[0.1282 - 0.3250 - 1] 
[0.4853 - 0.3138 - 1] 

 

[0.1310 - 0.4187 - 1] 
[0.8387 - 0.0015 - 1] 
[0.4587 - 0.6841 - 1] 

 

[0.0523 - 0.5805 - 1] 
[0.0332 - 0.6736 - 1] 
[0.0560 - 0.0021 - 1] 

 

ab-g 
ca-g 
bc-g 

 

L – L - g 

0.0000 
0.0000 
0.0000 

 

[0.0000 - 0.0006 - 0] 
[0.5005 - 0.5148 - 0] 
[0.4996 - 0.4627 - 0] 

 

[0.4999 - 0.4828 - 0] 
[0.0000 - 0.0010 - 0] 
[0.5004 - 0.5345 - 0] 

 

[0.5000 - 0.5166 - 0] 
[0.4994 - 0.4842 - 0] 
[0.0000 - 0.0028 - 0] 

 

ab 
ca 
bc 
 

L – L 

0.0000 
 

[0.5012 - 0.1150 - 0] 
 

[0.4715 - 0.3355 - 0] 
 

[0.0273 - 0.5495 - 0] 
 

abc 
 

L – L – L 

 
 
Table 5 Feature vectors for different faults under wide variation of operating condition. 

Max(abs(Ig)) 
(kA) 

Xc 
for PNNc 

Xb 
for PNNb 

Xa 
for PNNa 

 
Fault 
Type 

0.1995 
0.3786 
0.4664 

 

[0.2486 - 0.3147 - 1] 
[0.1656 - 0.3030 - 1] 
[0.6432 - 0.3853 - 1] 

 

[0.2491 - 0.3004 - 1] 
[0.6688 - 0.3821 - 1] 
[0.1782 - 0.3118 - 1] 

 

[0.5023 - 0.3849 - 1] 
[0.1656 - 0.3149 - 1] 
[0.1786 - 0.3029 - 1] 

 

a-g 
b-g 
c-g 

 

L - g 

0.4094 
0.3328 
0.1807 

 

[0.3272 - 0.2865 - 1] 
[0.5244 - 0.3613 - 1] 
[0.5252 - 0.3546 - 1] 

 

[0.5100 - 0.3500 - 1] 
[0.1335 - 0.2832 - 1] 
[0.4667 - 0.3590 - 1] 

 

[0.1627 - 0.3635 - 1] 
[0.3421 - 0.3556 - 1] 
[0.0080 - 0.2864 - 1] 

 

ab-g 
ca-g 
bc-g 

 

L – L - g 

0.0000 
0.0000 
0.0000 

 

[0.0000 - 0.2537 - 0] 
[0.4996 - 0.4101 - 0] 
[0.5001 - 0.3310 - 0] 

 

[0.4995 - 0.3279 - 0] 
[0.0000 - 0.2511 - 0] 
[0.4999 - 0.4099 - 0] 

 

[0.5005 - 0.4184 - 0] 
[0.5004 - 0.3389 - 0] 
[0.0000 - 0.2591 - 0] 

 

ab 
ca 
bc 
 

L – L 

0.0000 
 

[0.5785 - 0.3233 - 0] 
 

[0.4004 - 0.3237 - 0] 
 

[0.0211 - 0.3530 - 0] 
 

abc 
 

L – L – L 
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Table 6 Fault classification accuracy for different fault types. 
Accuracy

(%) 
No. of 

Erroneous 
Classification 

No. of 
Test 

Cases 

Fault 
Type 

99.721 360 L – g 

97.509 360 L – L – g 

1000 360 L – L 

1000 120 L – L – L 

99.1710 1200 Total 

 
 
Table 7 Performance of proposed algorithm with different 
source impedance. 

 
 
5 Further Studies 

5.1   Effect of Noise Signal 
Generally, the current waveforms taken of the CT 

outputs involve added noise signal in actual power 
system. In power quality analysis, the performance of 
algorithms is investigated in noisy environment. In 
digital protection, the effected to noise signal has been 
reported as main drawback of wavelet techniques. But 
in this work, the mentioned limitation has been removed 
by selecting of the fourth level of wavelet coefficients 
by MRA. Therefore, the 20 dB and 30 dB Gaussian 
white noises are added to pure current samples in 
MATLAB software. The new feature vectors are 
calculated by added noise signals. The fault classifier is 
tested by new feature vectors. Although, it had been 
trained by test data cases achieved of preprocessed the 
pure current signals. The 97.5% and 92.08% fault 
classification accuracies are found out for signals with 
30 dB and 20 dB noises, respectively. The results show 
that, an increased noise level in the input signals reduces 
the classification accuracy. From this result, it can be 
observed that, the WER-PNN technique is robust at 
noisy environment. Thus, this approach doesn’t require 

to de-noising equipment. However, the proposed 
technique has removed delay time for de-nosing 
process. 
 
5.2   Comparison with other Classification Schemes 

In recent years, Das has been proposed a reasonably 
accurate fuzzy logic based fault classification scheme 
[5] in which a high classification accuracy for half cycle 
(10ms) after fault inception had been reported for EHV 
transmission line. It has been found that the 97.416% 
overall classification accuracy by the fault classification 
scheme of [5], which is lower than the accuracy in this 
paper (99.15%) obtained by the proposed WER-PNN 
scheme. On the other hand, the proposed method is 
applicable for a wider variation in the operating 
conditions in comparison to the method proposed by 
Das. Where as Das’s method is valid for variation in Rf 
up to 50 Ω, variation in  Lf  up to 0.8 (in p.u. of line 
length) and variation in δ up to 30o; our proposed 
method  is valid for variation in Rf up to 200 Ω,variation 
in Lf up to 0.95p.u and variation in δ being up to 40o. In 
this wok, variation of the source impedance has been 
considered for both sources, while Das has neglected 
this variable from the operating conditions. 

In order to achieve valid comparison between our 
proposed technique and technique of [5], the different 
conditions for ten types of fault have been simulated 
based on generated data cases according to Table 8. The 
above simulation had been considered in [5]. 
Beforehand, the same transmission line configuration 
has been considered for simulation study of both of the 
methods. As shown in Table 8, a total of 3 × 5 × 4 × 4 × 
10 = 2400 cases have been generated. In this study, 400 
cases are peaked up as train cases and 2000 cases are 
selected for test cases, randomly. 

Finally, after fault cases generating, upon testing 
over 2000 test cases, It has been found that the 
classification accuracy by the proposed scheme is 
 
 
Table 8 Simulation variables in reference [5]. 

 
Training & Test 

 

 
Simulation Variables 

 
10 – 20 – 30 

 
Power Angle ( δ ) 

10 – 30 – 60 – 90 – 190 Fault Inception Angle (°) 
 

 
0.2 – 0.4 – 0.6 – 0.8 

 

Fault Location 
(percent of line) 

0 – 5 – 25 - 50 Fault Resistance (Ω) 

a-g , b-g , c-g, ab-g, ca-g 
bc-g , ab, ca, bc, abc 

 

Fault Type 
 

Accuracy 
(%) 

No . of 
Test 

Cases 

Zs2 
(%) 

Zs1 
(%) 

Case 
No. 

99.17 240 100 100 1 

98.75 240 100 75 2 

98.33 240 75 100 3 

99.58 240 100 125 4 

100 240 125 100 5 

99.17 1200   Total 
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Table 9 Classification accuracy with selecting 400 random 
train cases. 

Accuracy 

(%) 

 

No. of 
Erroneous 

Classification 

No. of 

Test 
Cases 

Random 

Case No. 

99.55 9 2000 1 

99.05 19 2000 2 

99.95 1 2000 3 

99.80 4 2000 4 

99.70 6 2000 5 

99.75 5 2000 6 

99.60 8 2000 7 

99.30 14 2000 8 

99.58 8.25 2000 Average 

 
 
99.55%, which is higher than the accuracy reported by 
method of [5] (97.416%) based on the Half Cycle 
Discrete Fourier Transform (HCDFT) and fuzzy logic 
system. In order to validate of the proposed method, 
random selecting of the 400 train cases has been 
repeated eight fold. Table 9 shows classification results 
for each random selected case. From the results 
presented in this table it can be observed that the 
proposed method has high accuracy (over 99%). 

Recently, feature extraction technique based on 
wavelet transform packages have been presented for 
transmission fault classification [3, 12-13]. In the above 
methods, authors have presented a feature selection 
techniques using sum of the absolute values of detail 
coefficients of two cycles post fault line currents. The 
above works find limitations as wavelet detail 
coefficients is highly susceptible to noise and provides 
erroneous results even with noise of SNR 20 dB. Also, 
time duration considered in the analysis comes out to 
two cycles after post fault. However, these algorithms 
have low speed. But, in our proposed technique, the 
energy values of detail and approximation coefficients 
of half cycles post fault line currents have been used and 
above drawbacks have been removed. 

In this paper, a new feature selection scheme for 
transmission line fault classification is presented based 
on GI and WERs using 4th level detail and 
approximation coefficient of half cycle post fault line 
currents. The technique is very fast and simple in 
comparison to the [12, 13] approaches. Feature vectors 
are normalized and suitable for other power system with 
different voltage and frequency. Fig. 8 shows Three-
dimensional feature vectors (Xa, Xb, Xc) as input for 

three PNN classifiers corresponding data cases at Table 
8 [5]. As shown in Fig. 8, the faulty and healthy phases 
have been classified into two groups (ground faults 
(GI=0) and phase fault types (GI=1)). It is observed that 
the feature 3 (GI) plays basic rule in discriminating of 
the healthy phase cases (o) (belong to ground fault 
 
 

 
 

 
 

Fig. 8 Three-dimensional features vectors for three classifiers. 
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types) from the faulty phase cases (*) (belong to phase 
fault types). For example, in the C-phase features (Xc) 
case in Fig. 8, it has been found that if the GI hadn’t 
been applied in this algorithm as third feature, the WER 
nods of healthy phase for ground fault types and faulty 
phase for phase fault types have covered each other and 
the phase classifiers hadn’t ability to recognition the 
faulted phase. Also, the relationship between feature 1 
and feature 2 corresponding with each phase for fault 
phase category (GI=1) is nonlinear. However, the PNN 
classifier as intelligent tool is able to distinguish the 
transients originating of the faulted phase from those 
originating of other healthy phases. 
 
6 Conclusion 

In this paper, high speed and accurate fault 
classification technique of transmission line based on 
new feature selection of wavelet transform and PNN has 
been presented. Scheme of proposed approach consist of 
three PNNs and one ground detector. The PNNs 
distinguish healthy phase from faulted phase in different 
fault types. Each classifier fed by particular three 
features. Two first features are WER for detail and 
approximate coefficient at fourth level decomposition 
and three features for three classifiers is GI. The 
proposed technique uses ground current for detecting 
ground fault and calculating GI. The required data sets 
are obtained through simulation in PSCAD/EMTDC 
considering different conditions. The wavelet transform 
is found to be very powerful tool for feature extraction 
of transient signal. 

The feasibility of the developed technique has been 
tested on an extensive data set of 1200 test cases 
covering a wider range of operating conditions rather 
than to the training data cases. The proposed method is 
tested with parameters that are not included as part of 
training. Hence, it is observed that the proposed method 
is robust to parameter variations. From these test 
studies, the accuracy of the proposed classification 
technique has been found to be at least 99% by using 
only half cycle post fault currents. Thus, this technique 
is fast and accurate method. Also, the effect of noise on 
the classification performance is investigated. 
Therefore, the proposed fault classification technique 
can be considered quite suitable for digital distance 
protection scheme of a transmission line. The fault 
analysis in the transmission line with TCSC and other 
FACTS devices and those performances on distance 
protection can be investigated for future works. 
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